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Solid-State Silicon NMR Quantum Computer

E. Abe,1 K. M. Itoh,1 T. D. Ladd,2 J. R. Goldman,2 F. Yamaguchi,2 and Y. Yamamoto2

Received September 30, 2002

A solid-state quantum computer composed entirely of semiconductor silicon is proposed.
Qubits are nuclear spins, I = 1/2, of 29Si stable isotopes in the form of atomic chains em-
bedded in a nuclear-spin free matrix of 28Si stable isotopes. Each 29Si nuclear spin in a chain
can be accessed selectively with a different resonant frequency (rf) due to a large magnetic
field gradient created by a nearby micromagnet, i.e., unitary operations needed for quantum
computing can be performed by fine tuning of the rf. Ensemble readout of qubits from 105

copies of the atomic chain is accomplished by magnetic resonance force microscopy.
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Recent theoretical development of quantum in-
formation theory, especially the invention of Shor’s
factoring alogorithm [1], has spurred physical realiza-
tion of quantum computers. So far, the only physical
system that has succeeded in the experimental imple-
mentations of nontrivial quantum algorithms is liquid-
state nuclear spin resonance (NMR) at room temper-
ature [2,3]. These solution NMR quantum computers
deal with a large ensemble of about 1018 nuclear spins
of uncoupled, identical molecules. This allows one to
control and measure qubits without destroying their
coherence or performing single-spin detection. The
drawback is that it tends to suffer exponential de-
crease of signal as adding qubits, because the ex-
periments start with very small nuclear polarization
at the thermal equilibrium state of about 10−5. This
limits the number of qubits accessible with solution
NMR to about 10 qubits [4]. Thus the initialization
problem should be addressed in order to improve
the scalability of NMR-based quantum computation.
The present paper introduces a new NMR quantum
computer made exclusively of solid-state silicon (thus
named “all-silicon quantum computer”) with possi-
bility of a strong nuclear polarization enhancement
leading to much improved scalability [5].
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Figure 1 shows the structure of our all-silicon
quantum computer. Qubits are one-dimensional
atomic chains of 29Si (spin-1/2) stable isotopes em-
bedded in 28Si (spin-0) stable isotope matrix aligned
along the (11̄0) direction, which we define as the z
direction. Nuclear spins in a chain have different res-
onant frequencies due to a large field gradient from a
nearby dysprosium (Dy) micromagnet. Each atomic
chain corresponds to each molecule in solution NMR.
The magnetic field gradient in our configuration can
be as large as∼1.4 T/µm along the z direction [6], i.e.,
each qubit (each 29Si isotope in a chain) feels different
magnetic field from others. A frequency difference be-
tween adjacent qubits estimated by1ω = αγ ∂Bz/∂z,
is 2π × 2 kHz, where α = 0.19 nm is the projection to
the z direction of the distance between two adjacent
29Si nuclei and γ = 2π × 8.46 MHz/T is the gyromag-
netic ratio of 29Si nucleus. The field homogeneity in
the xy plane is kept only in a narrow region of 100µm
by 0.2 µm, in which 105 atomic chains are placed.
Nuclei with identical resonant frequency exist in the
same xy plane. The number of identical nuclear spins
is so small that the conventional pickup coil could
never be used for the detection. Thus, we employ
an alternative method for ensemble readout, mag-
netic resonance force microscopy (MRFM), which is
by far the most sensitive NMR method available to-
day [7]. To perform MRFM, 28Si matrix itself forms
a high-Q cantilever sustained at both edges, called a
“bridge.”
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Fig. 1. The integrated bridge and micromagnet structure. The
bridge has length l = 300 µm, width w = 4 µm, and thickness
t = 0.25µm. The micromagnet, separated from the bridge with the
spacing s = 2.1 µm, has length L= 400 µm, width W = 4 µm, and
height H = 0.25 µm. The dashed lines represent the active region
of 100µm by 0.2µm, where atomic chains are embedded. The inset
shows the 29Si nuclei aligned at the terrace edge. The aspect ratios
are exaggerated. The stucture is kept in high vacuum (< 10−5 torr)
and at low temperatures (∼4 K). An optical fiber and an rf coil are
not shown.

One of the key factors to realize this scheme is en-
gineering of semiconductor isotopes. Natural silicon
is composed of three stable isotopes: 92.23% of 28Si,
4.67% of 29Si, and 3.10% of 30Si. Only 29Si has spin
1/2. The growth of isotopically enriched 28Si (99.92%)
bulk single crystal has been realized by the present
group [8], and the crystal growth of 28Si or other iso-
topes with higher isotope purity is in process. Another
key factor is surface engineering of silicon in order to
construct atomically straight chains of 29Si on a sur-
face of a 28Si wafer. It has been reported that highly
regular arrays of steps with the average width of 15 nm
can be produced on vicinal Si(111)-(7× 7) surfaces
[9]. Using such materials and techniques, MBE de-
position of 29Si in the step-flow mode on atomically
straight (11̄0) terrace edges of a 28Si(111) wafer will
allow for the fabrication of atomic chains. The mono-
lithic fabrication of the bridge-shaped silicon can-
tilever and Dy micromagnet is well within the reach
of current technologies.

For initialization, a combination of optical pump-
ing, algorithmic cooling, and pseudo-pure state tech-
niques may be used. Optical pumping is well-known
as the powerful method for dynamic nuclear polar-
ization in direct band gap semiconductors like GaAs.
Spin-polarized conduction electrons pumped by cir-
cularly polarized light interact with host nuclei via
hyperfine couplings, which makes the nuclear polar-
ization far beyond the thermal equilibrium possible.

After the recombination of photoexcited electrons, no
spurious spin that leads to decoherence exists, which
is well suited for our purpose, because the isolation
of qubits from their environment is achieved during
the computation. The nuclear polarization of more
than 10% can be achieved for bulk GaAs [10]. How-
ever, the polarization enhancement of only 0.1% has
been reported for silicon at 77 K in low fields of
about 0.1 mT [11]. This low polarization is mainly
attributed to the lifetime of photoexcited electrons
which is much longer than the electron spin relax-
ation time. Thus the conduction electrons are only
slightly spin polarized. The selection rule of the inter-
band transition, which is different from that of GaAs,
also limits the possible electron spin polarization. On
the other hand, higher polarization may be achieved
for silicon at lower temperatures (∼4 K) and in higher
fields (∼10 T). It needs to be tested in the future.

The algorithmic cooling technique redistributes
the entropy of a subsystem to another, while preserv-
ing the total entropy [12]. The number of pure qubits
available from mixed initial n0 qubits is [1− H((1+
p0)/2)]n0, if the procedure is continued to the entropy
bound. Here H(p) = −p log2 p− (1− p) log2(1− p)
is the entropy function and p0 is the polarization be-
fore the procedure. There are n0 = t/a ≈ 103 qubits in
a chain, hence, to obtain 102 clean qubits for instance,
the polarization of about 40% is needed before the
procedure, i.e., by optical pumping. However, if the
polarization is not so large, pseudo-pure state tech-
niques can be applied as in solution NMR case.

MRFM readout is performed using cyclic adia-
batic inversion [13]. Suppose we want to detect the
ensemble average of a signal arising from a group
of ith qubits, which feel the identical static magnetic
field Bz

i . In other words, a group of ith qubits are
contained in the ith xy plane. The z component of
the magnetic force due to the field gradient is given
by Fz

i = Mz
i ∂Bz/∂z, where Mz

i is the z component of
the ith plane’s magnetization. When the alternating
magnetic field Brf generated from a coil is applied,
the magnetic moment experiences the effective mag-
netic field given by Beff = Brfx̂+ (Bz− ω/γ )ẑ in the
rotating frame, whereω and Brf are the frequency and
amplitude of the applied rf field, respectively. If the
adiabatic condition |ωm|2 ¿ γ Bz

i Ä is satisfied, the
magnetization “follows” the effective magnetic field.
So the periodic modulation of ω around the ith
plane’s resonant frequency, in the form ω = γ Bz

i +
Ä cos(ωmt), will cause the oscillating magnetic force,
which makes the cantilever oscillate back and forth.
HereÄ is the amplitude of frequency modulation and
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ωm is the modulation frequency chosen to be near
the mechanical eigen frequency of the bridge. The
condition Ä¿ 1ω must be satisfied, otherwise the
adjacent planes would be affected. The phase of the
oscillation will differ by π depending on if the spins
are up or down. The bridge oscillation can be moni-
tored using an optical-fiber based displacement sen-
sor. In this way, the detection of the signal from the
single plane is possible, and simultaneous detection
of signals from multiple planes is also possible if the
modulation frequencies differ plane by plane. The sig-
nals from different planes can be distinguished by the
Fourier transform of the oscillation pattern.

Qubits interact via dipolar coupling and their ma-
nipulations are accomplished with rf pulse sequences.
Such manipulation based on rf pulses are highly es-
tablished in usual NMR experiments. The dipolar
Hamiltonian which couples ith and jth spins within
one chain is written [14]

Ĥi j = µ0

4π
γ 2h̄2 1− 3 cos2 θi j

r3
i j

Î z
i Î z

j (1)

where ri j is the length of the vector connecting the
spins and θi j is its angle with the applied field. Espe-
cially θi,i+1 satisfies cos2 θi,i+1 = 2/3. In NMR quan-
tum computation, it is not easy to exclusively ma-
nipulate interaction between spins of two arbitrarily
chosen qubits since interactions between other qubits
always exist. Therefore proper pulse sequences for
coupling selected spins while decoupling others must
be applied simultaneously. So called broadband
WAHUHA pulses and narrowband Hadamard pulses
serve this purpose [15,16]. There remain uncontrol-
lable dipolar couplings even after such pulses are ap-
plied. These residual couplings occur between ith and
jth planes’ nuclei in different chains when ith and jth
qubits are coupled. They may cause gate errors, but
the error rate can be kept as low as 10−6 by using bit-
swapping. The possible number of logic gates can be
calculated from the decoherence time T2 divided by
the clock speed tc. The clock speed of this computer is
mainly influenced by the size of the Hadamard pulse
sequence, which becomes longer as the number of
qubits increases [16]. However, not all qubits have to
be decoupled because Eq. (1) tells us that couplings
between distant qubits are quite small. As a result, the
size of the pulse sequence can be optimized, and if suf-
ficiently long T2 is achieved, our scheme may allow for
more than a thousand logic gates.

The scalability of our scheme can be estimated
from the viewpoint of SNR. The thermal fluctuation

of the bridge (i.e., noise) determines the force resolu-
tion for MRFM, while the force from the bridge (i.e.,
signal) depends on how many nuclei are effectively
available. The force from the effective subensemble
of nuclei in the pseudo-pure state is estimated as [4]

Fz = h̄1ω
2a

N
[(

1+ p
2

)n

−
(

1− p
2

)n]
, (2)

where p is the polarization after optical pumping
and algorithmic cooling, n is the number of available
qubits, and N = 105 is the number of qubit copies. The
minimum detectable force of the bridge in a band-
width B is estimated by the following equation [17]

Fmin =
√

4kkBTB
ωc Q

, (3)

where k is a spring constant, ωc is a resonance fre-
quency, and Q is a quality factor. A lumped har-
monic oscillator model yields k≈ 0.0042 N/m and
ωc ≈ 2π × 23 kHz. We assume a modest value 104

for Q. The field homogeneity in a plane gives an es-
timated value 0.6 kHz for B. The condition that the
measurable force exceeds the thermal noise threshold
may give the number of available qubits. Evaluating
Fz and Fmin, the number of available qubits as a func-
tion of p is plotted in Fig. 2. At low p, exponential
improvements in p are needed to increase the num-
ber of measurable qubits n. Once p exceeds about
60%, however, n scales as n ∼ (1+ p)/(1− p), escap-
ing the exponential downscaling which solution NMR
suffers. Our estimate shows that if sufficiently high

Fig. 2. The number of qubits n as a fuction of the polarization p.



P1: GDX

Journal of Superconductivity: Incorporating Novel Magnetism (JOSC) PP792-josc-461753 March 13, 2003 1:2 Style file version June 22, 2002

178 Abe, Itoh, Ladd, Goldman, Yamaguchi, and Yamamoto

polarizations are achieved, the scheme affords more
than a hundred qubits without the need of single-spin
detection or unrealistic advances in fabrication, mea-
surement, or control technologies.
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