Electron spins in nonmagnetic semiconductors

Yuichiro K. Kato
Institute of Engineering Innovation, The University of Tokyo

Physics of non-interacting spins

Optical spin injection and detection

Spin manipulation in nonmagnetic semiconductors

Physics of non-interacting spins

In non-magnetic semiconductors such as GaAs and Si , spin interactions are weak; To first order approximation, they behave as non-interacting, independent spins.

- Zeeman Hamiltonian
- Bloch sphere
- Larmor precession
- T_{1}, T_{2}, and T_{2}^{*}
- Bloch equation

The Zeeman Hamiltonian

Hamiltonian for an electron spin in a magnetic field

$$
H=-\vec{M} \cdot \vec{B}=g \mu_{\mathrm{B}} \vec{S} \cdot \vec{B}
$$

\vec{M} : magnetic moment
\vec{B} : magnetic field
magnetic moment of an electron spin

$$
\vec{M}=-g \mu_{\mathrm{B}} \vec{S}
$$

g : Landé g-factor (=2 for free electrons)

$$
\mu_{\mathrm{B}}=\frac{e \hbar}{2 m}: \text { Bohr magneton }
$$

$$
=58 \mu \mathrm{eV} / \mathrm{T}
$$

e : electronic charge
\hbar : Planck constant
m : free electron mass
$\vec{s}=\frac{\vec{\sigma}}{2}$: spin operator
$\vec{\sigma}$: Pauli operator

The Zeeman Hamiltonian

Hamiltonian for an electron spin in a magnetic field

$$
H=-\vec{M} \cdot \vec{B}=g \mu_{\mathrm{B}} \vec{S} \cdot \vec{B}
$$

\vec{M} : magnetic moment
\vec{B} : magnetic field

$$
\xrightarrow{\stackrel{\rightharpoonup}{S}} E=+\frac{g \mu_{\mathrm{B}} B}{2}
$$

\vec{B}

$$
-\quad E=-\frac{g \mu_{\mathrm{B}} B}{2}
$$

magnetic moment of an electron spin

$$
\vec{M}=-g \mu_{\mathrm{B}} \vec{S}
$$

g : Landé g-factor (=2 for free electrons)

$$
\mu_{\mathrm{B}}=\frac{e \hbar}{2 m}: \text { Bohr magneton }
$$

$$
=58 \mu \mathrm{eV} / \mathrm{T}
$$

e : electronic charge
\hbar : Planck constant
m : free electron mass
$\vec{s}=\frac{\vec{\sigma}}{2}$: spin operator
$\vec{\sigma}$: Pauli operator

The energy eigenstates

Without loss of generality, we can set the z-axis to be the direction of \vec{B}, i.e., $\vec{B}=(0,0, B)$

$$
H=g \mu_{\mathrm{B}} \vec{S} \cdot \vec{B}=g \mu_{\mathrm{B}} B s_{Z}
$$

$$
\begin{array}{ll}
\text { Spin "up" } & s_{Z}|\uparrow\rangle=+\frac{1}{2}|\uparrow\rangle \\
s_{Z}=+\frac{1}{2} & E=+\frac{g \mu_{\mathrm{B}} B}{2}
\end{array}
$$

$|\downarrow\rangle$

$$
\begin{array}{ll}
\text { Spin "down" } & s_{Z}|\downarrow\rangle=-\frac{1}{2}|\downarrow\rangle \\
s_{Z}=-\frac{1}{2} & E=-\frac{g \mu_{\mathrm{B}} B}{2}
\end{array}
$$

Spinor notation and the Pauli operators

Quantum states are represented by a normalized vector in a Hilbert space
\square Spin states are represented by 2D vectors

$$
|\uparrow\rangle=\binom{1}{0} \quad|\downarrow\rangle=\binom{0}{1}
$$

Spin operators are represented by 2×2 matrices. For example, the Pauli operators are

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

ex. $\quad s_{Z}|\uparrow\rangle=+\frac{1}{2}|\uparrow\rangle \quad$ is equivalent to

$$
s_{z}|\uparrow\rangle=\frac{\sigma_{z}}{2}|\uparrow\rangle=\frac{1}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{1}{0}=\frac{1}{2}\binom{1}{0}=+\frac{1}{2}|\uparrow\rangle
$$

Expectation values of the Pauli vector

$$
\sigma_{x}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Expectation values for the spin up state

$$
\begin{aligned}
& \langle\uparrow| \sigma_{x}|\uparrow\rangle=\left(\begin{array}{ll}
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{1}{0}=\left(\begin{array}{ll}
1 & 0
\end{array}\right)\binom{0}{1}=0 \\
& \langle\uparrow| \sigma_{y}|\uparrow\rangle=\left(\begin{array}{ll}
1 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\binom{1}{0}=\left(\begin{array}{ll}
1 & 0
\end{array}\right)\binom{0}{i}=0 \\
& \langle\uparrow| \sigma_{z}|\uparrow\rangle=\left(\begin{array}{ll}
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{1}{0}=\left(\begin{array}{ll}
1 & 0
\end{array}\right)\binom{1}{0}=1 \\
& \langle\vec{\sigma}\rangle=(0,0,1) \quad \longrightarrow \text { spin is pointing in the }+z \text { direction }
\end{aligned}
$$

One more example: Expectation values for a coherent superposition

$$
\begin{aligned}
& |\varphi\rangle=\frac{1}{\sqrt{2}}(|\uparrow\rangle+|\downarrow\rangle)=\frac{1}{\sqrt{2}}\binom{1}{1} \\
& \langle\varphi| \sigma_{x}|\varphi\rangle=\frac{1}{2}\left(\begin{array}{ll}
1 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{1}{1}=\frac{1}{2}\left(\begin{array}{ll}
1 & 1
\end{array}\right)\binom{1}{1}=1 \\
& \langle\varphi| \sigma_{y}|\varphi\rangle=\frac{1}{2}\left(\begin{array}{ll}
1 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\binom{1}{1}=\frac{1}{2}\left(\begin{array}{ll}
1 & 1
\end{array}\right)\binom{-i}{i}=0 \\
& \langle\varphi| \sigma_{z}|\varphi\rangle=\frac{1}{2}\left(\begin{array}{ll}
1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{1}{1}=\frac{1}{2}\left(\begin{array}{ll}
1 & 1
\end{array}\right)\binom{1}{-1}=0
\end{aligned}
$$

$$
\langle\vec{\sigma}\rangle=(1,0,0) \quad \square \text { spin is pointing in the }+x \text { direction }
$$

spin can point in any direction, but when measured along a particular axis, it can only be "up" or "down"

The Bloch sphere

In general, $|\varphi\rangle=\lambda|\uparrow\rangle+\mu|\downarrow\rangle$ where λ and μ are complex numbers.
Any spin state (and any qubit) can be represented by a point on a sphere
$\langle\vec{\sigma}\rangle=(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$
one-to-one
$|\varphi\rangle=e^{-i \frac{\phi}{2}} \cos \frac{\theta}{2}|\uparrow\rangle+e^{+i \frac{\phi}{2}} \sin \frac{\theta}{2}|\downarrow\rangle$

This is the most general state. 2 complex coefficients have 4 degrees of freedom, minus normalization condition and arbitrariness of the global phase.

How does a spin state that is perpendicular to magnetic field evolve with time?
Initial state: $|\varphi(t=0)\rangle=\frac{1}{\sqrt{2}}(|\uparrow\rangle+|\downarrow\rangle)$

1. Obtain the time-evolution operator

$$
U(t)=\exp \left(\frac{H t}{i \hbar}\right)
$$

2. Compute the state at time t

$$
|\varphi(t)\rangle=U(t)|\varphi(0)\rangle
$$

3. Calculate the expectation value of $\vec{\sigma}$

$$
\langle\varphi(t)| \vec{\sigma}|\varphi(t)\rangle
$$

Time-evolution operator

1. Time-evolution operator is given by

$$
U(t)=\exp \left(\frac{H t}{i \hbar}\right) \quad \text { where } \quad H=g \mu_{\mathrm{B}} B s_{z}=\frac{g \mu_{\mathrm{B}} B}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

so

$$
U(t)=\left(\begin{array}{cc}
\exp \left(-i \frac{g \mu_{\mathrm{B}} B t}{2 \hbar}\right) & 0 \\
0 & \exp \left(+i \frac{g \mu_{\mathrm{B}} B t}{2 \hbar}\right)
\end{array}\right)=\left(\begin{array}{cc}
\exp \left(-i \frac{\Omega t}{2}\right) & 0 \\
0 & \exp \left(+i \frac{\Omega t}{2}\right)
\end{array}\right)
$$

where $\quad \Omega=\frac{g \mu_{\mathrm{B}} B}{\hbar}$ is the Larmor frequency $\left(\frac{\mu_{\mathrm{B}}}{2 \pi \hbar}=14 \mathrm{GHz} / \mathrm{T}\right)$
2. The state at time t is obtained by applying $U(t)$ on the initial state

$$
\begin{aligned}
& |\varphi(0)\rangle=\frac{1}{\sqrt{2}}(|\uparrow\rangle+|\downarrow\rangle)=\frac{1}{\sqrt{2}}\binom{1}{1} \\
& |\varphi(t)\rangle=U(t)|\varphi(0)\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
\exp (-i \Omega t / 2) & 0 \\
0 & \exp (+i \Omega t / 2)
\end{array}\right)\binom{1}{1}=\frac{1}{\sqrt{2}}\binom{\exp (-i \Omega t / 2)}{\exp (+i \Omega t / 2)}
\end{aligned}
$$

Larmor precession

$$
\begin{aligned}
& \text { 3. Expectation value of } \vec{\sigma} \\
& \begin{aligned}
\langle\varphi(t)| \sigma_{x}|\varphi(t)\rangle & =\frac{1}{2}\left(\begin{array}{ll}
e^{+\frac{i \Omega t}{2}} & \left.e^{-\frac{i \Omega t}{2}}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{e^{-\frac{i \Omega t}{2}}}{e^{+\frac{i \Omega t}{2}}} \\
& =\frac{1}{2}\left(e^{+i \Omega t}+e^{-i \Omega t}\right) \\
& =\cos \Omega t \\
\langle\varphi(t)| \sigma_{y}|\varphi(t)\rangle & =\frac{1}{2}\left(\begin{array}{ll}
e^{+\frac{i \Omega t}{2}} & \left.e^{-\frac{i \Omega t}{2}}\right)\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\binom{-\frac{i \Omega t}{2}}{e^{+\frac{i \Omega t}{2}}} \\
& =-\frac{i}{2}\left(e^{+i \Omega t}-e^{-i \Omega t}\right) \\
& =\sin \Omega t
\end{array}\right. \\
\begin{array}{ll}
\text { spin precession in the } x y \text { plane at } \\
\text { an angular frequency } \Omega=g \mu_{\mathrm{B}} B / \hbar
\end{array}
\end{array}\right.
\end{aligned} \begin{aligned}
\end{aligned}
\end{aligned}
$$

$$
\langle\varphi(t)| \sigma_{z}|\varphi(t)\rangle=\frac{1}{2}\left(\begin{array}{l}
e^{+\frac{i \Omega t}{2}}
\end{array} e^{-\frac{i \Omega t}{2}}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{e^{-\frac{i \Omega t}{2}}}{e^{+\frac{i \Omega t}{2}}}=1-1=0
$$

More intuitive semi-classical picture can be obtained

$$
\begin{aligned}
& H=g \mu_{\mathrm{B}} \vec{S} \cdot \vec{B}=g \mu_{\mathrm{B}}\left(B_{x} s_{x}+B_{y} s_{y}+B_{z} s_{z}\right) \\
& \frac{d s_{x}}{d t}=\frac{1}{i \hbar}\left[s_{x}, H\right]=\frac{g \mu_{\mathrm{B}}}{i \hbar}\left\{\left[s_{x}, s_{y}\right] B_{y}+\left[s_{x}, s_{z}\right] B_{z}\right\}
\end{aligned}
$$

using commutation relations: $\left[s_{x}, s_{y}\right]=i s_{z},\left[s_{y}, s_{z}\right]=i s_{x},\left[s_{z}, s_{x}\right]=i s_{y}$

$$
\left.\begin{array}{l}
\frac{d s_{x}}{d t}=\frac{g \mu_{\mathrm{B}}}{\hbar}\left\{s_{z} B_{y}-s_{y} B_{z}\right\} \\
\frac{d s_{y}}{d t}=\frac{g \mu_{\mathrm{B}}}{\hbar}\left\{s_{x} B_{z}-s_{z} B_{x}\right\} \\
\frac{d s_{z}}{d t}=\frac{g \mu_{\mathrm{B}}}{\hbar}\left\{s_{y} B_{x}-s_{x} B_{y}\right\}
\end{array}\right] \begin{array}{r}
\text { combined into one vector equation } \\
\frac{d \vec{s}}{d t}=\vec{\Omega} \times \vec{s} \\
\text { where } \vec{\Omega}=\frac{g \mu_{\mathrm{B}}}{\hbar} \vec{B}
\end{array}
$$

Semi-classical equation of motion

$$
\frac{d \vec{s}}{d t}=\vec{\Omega} \times \vec{s}
$$

$$
\vec{\Omega}=\frac{g \mu_{\mathrm{B}}}{\hbar} \vec{B}
$$

rate of change for angular momentum
in terms of magnetization $\vec{M}=-g \mu_{\mathrm{B}} \vec{S}$ and spin angular momentum $\vec{S}=\hbar \vec{S}$

- Torque is perpendicular to both magnetic field and spin
- Parallel component of spin is conserved
- Perpendicular component precesses

Spin precesses in a cone at frequency Ω

In a real world, interaction with the environment will eventually randomize spin

1. Longitudinal spin relaxation $\left(T_{1}\right)$

Requires energy relaxation
2. Transverse spin relaxation $\left(T_{2}\right)$

Phase relaxation is enough

For an ensemble, Inhomogeneous dephasing (T_{2}^{*})

$$
\frac{d \vec{s}}{d t}=\vec{\Omega} \times \vec{s}-\frac{(\vec{s} \cdot \widehat{\Omega}) \widehat{\Omega}}{T_{1}}-\frac{\vec{s}-(\vec{s} \cdot \widehat{\Omega}) \widehat{\Omega}}{T_{2}^{*}} \quad \widehat{\Omega}=\frac{\vec{\Omega}}{|\vec{\Omega}|}
$$

Bloch equation

$$
\frac{d \vec{S}}{d t}=\vec{M} \times \vec{B}-\frac{(\vec{S} \cdot \hat{B}) \hat{B}}{T_{1}}-\frac{\vec{S}-(\vec{S} \cdot \hat{B}) \hat{B}}{T_{2}^{*}} \quad \hat{B}=\frac{\vec{B}}{|\vec{B}|}
$$

For spins initially pointing along x in a magnetic field along z, the solution for spin component along x is given by

$$
s_{x}(t)=\frac{1}{2} \exp \left(-\frac{t}{T_{2}^{*}}\right) \cos \Omega t
$$

Summary: physics of non-interacting spins

- Zeeman Hamiltonian $H=g \mu_{\mathrm{B}} \vec{S} \cdot \vec{B}$
- Bloch sphere
- Larmor precession
- T_{1}, T_{2}, and T_{2}^{*}
- Bloch equation

Optical spin injection and detection

In direct gap nonmagnetic semiconductors, Larmor precession can be directly observed in the time domain

- Optical selection rules
- Time-resolved

Kerr/Faraday rotation

- Hanle effect

Time-resolved Kerr rotation data

Electron spins are optically injected at $\mathrm{t}=0$

Optical selection rules

left circularly polarized photons carry angular momentum of +1 right circularly polarized photons carry angular momentum of -1 (in units of \hbar)

selection rules from angular momentum conservation

valence band

Time-resolved Faraday (Kerr) rotation

1. Circularly polarized pump creates spin population

~100fs pulses at 76 MHz
Ti:Sapphire

Heavy and
light holes

1. Circularly polarized pump creates spin population
2. Linearly polarized probe measures S_{x}

3. Circularly polarized pump creates spin population
4. Linearly polarized probe measures S_{x}
5. Δt is scanned and spin precession is mapped out

$$
\begin{gathered}
\qquad \theta_{F}=A e^{-\Delta t / T_{2}^{*}} \cos (\Omega \Delta t) \\
\Omega=g \mu_{B} B / \hbar \\
\text { S. Crooker et al., PRB 56, } 7574 \text { (1997) }
\end{gathered}
$$

TRFR in quantum wells and quantum dots

ZnCdSe quantum well Science 277, 1284 (1997)

CdSe quantum dots PRB 59, 10421 (1999)

Hanle effect

In DC measurements, magnetic field dependence of the spin polarization becomes Lorentzian.

Fig. 14. The Hanle effect in an $\mathrm{n} \cdot \mathrm{Ga}_{0.8} \mathrm{Al}_{0.2}$ As crystal at 4.2 K for the A -band presented in fig. 10 (Vekua et al. 1976). Curves 1 and 2 were calculated according to eqs. (63) and (64) respectively, curve 3 is the Lorentz contour with halfwidth $B_{1 / 2}=6 \mathrm{G}$ equal to the halfwidth of the experimental Hanle curve.
"Optical Orientation" (Elsevier, 1984)

Imaging the spin accumulation due to spin Hall effect

Science 306, 1910 (2004)
Spin accumulation at the edges are imaged by modulating the externally applied magnetic field and measuring the signal at the second harmonic frequency

Spin manipulation in nonmagnetic semiconductors

There are many interactions in nonmagnetic semiconductors that allow spin manipulation

- g-factor engineering
- spin-orbit interaction
- hyperfine interaction
- AC Stark effect

$\mathrm{H}=\mathrm{g} \mu_{\mathrm{B}} \mathbf{B} \cdot \mathbf{S}$

g : material dependent effective g-factor
B: magnetic field

$$
\begin{aligned}
& g=-0.44 \text { in } \mathrm{GaAs} \\
& g=-14.8 \text { in } \mathrm{InAs} \\
& g=1.94 \text { in } \mathrm{GaN}
\end{aligned}
$$

Change g in a static, global B !

move electrons into different materials using electric fields

Control the g-factor through material composition in semiconductor heterostructures

Weisbuch et al., PRB 15, 816 (1977)

Quasi-static electrical tuning of g-factor

Nature 414, 619 (2001)

g-factor is electrically tuned

Time dependent voltage
$\mathrm{V}(\mathrm{t})=\mathrm{V}_{0}+\mathrm{V}_{1} \sin (2 \pi \mathrm{v})$

Blue: Kerr Rotation
Red: microwave voltage

Fits well to equation :
$A e^{-\frac{t}{\tau_{1}}} \cos \left(\omega_{0} t+\frac{\omega_{1}}{\omega_{\mu}} \cos \left(\omega_{\mu} t+\phi_{\mu}\right)\right)$
Science 299, 1201 (2003)
\longrightarrow Spin precession is frequency modulated g -factor tuning at GHz frequency range

$$
\mathrm{H}=\hbar /\left(4 \mathrm{~m}^{2} \mathrm{c}^{2}\right)(\nabla \mathrm{V}(\mathbf{r}) \times \mathbf{p}) \cdot \sigma
$$

Allows zero-magnetic field spin manipulation by electric field through control of k

Rashba and Dresselhaus effects

time-reversal symmetry $\quad E(k, \uparrow)=E(-k, \downarrow) \quad$ Kramers degeneracy (i.e., at zero magnetic field) inversion symmetry $\quad E(k, \uparrow)=E(-k, \uparrow)$

Zero-magnetic-field spin splitting requires asymmetry

Rashba effect: structural inversion asymmetry (SIA) of quantum wells Sov. Phys. Solid State 2, 1109 (1960)

$$
\vec{\Omega}(\vec{k})=\alpha\left(k_{y},-k_{x}\right)
$$

Dresselhaus effect: bulk inversion asymmetry (BIA) of zinc-blende crystal Phys. Rev. 100, 580 (1955)

$$
\vec{\Omega}(\vec{k})=2 \gamma\left\{k_{x}\left(k_{y}^{2}-k_{z}^{2}\right), k_{y}\left(k_{z}^{2}-k_{x}^{2}\right), k_{z}\left(k_{x}^{2}-k_{y}^{2}\right)\right\}
$$

In a (001) quantum well

$$
\vec{\Omega}(\vec{k})=2 \gamma\left\langle k_{z}^{2}\right\rangle\left(k_{x},-k_{y}\right)
$$

Strain-induced terms

$$
\begin{aligned}
& \overrightarrow{\Omega_{3}}(\vec{k}) \propto\left\{\left(\varepsilon_{y y}-\varepsilon_{z z}\right) k_{x},\left(\varepsilon_{z z}-\varepsilon_{x x}\right) k_{y},\left(\varepsilon_{x x}-\varepsilon_{y y}\right) k_{z}\right\} \\
& \overrightarrow{\Omega_{4}}(\vec{k}) \propto\left(\varepsilon_{z x} k_{x}-\varepsilon_{x y} k_{y}, \varepsilon_{x y} k_{y}-\varepsilon_{y z} k_{z}, \varepsilon_{y z} k_{z}-\varepsilon_{z x} k_{x}\right)
\end{aligned}
$$

Nature 427, 50 (2004)

$0 \mathrm{~V} \mathrm{~cm}^{-1}$

$50 \mathrm{~V} \mathrm{~cm}^{-1}$
$100 \mathrm{~V} \mathrm{~cm}^{-1}$

Coherent spin population excited with electrical pulses

Phys. Rev. Lett. 93, 176601 (2004)

Precession at electron Larmor frequency of InGaAs
\longrightarrow Faraday rotation signal due to electrons
The signal shows sign change with magnetic field spins excited in the plane of the sample (along the effective magnetic field)
Electron spins are generated using picosecond electrical pulses

$$
H=A \vec{I} \cdot \vec{S}
$$

\vec{I} : nuclear spin
\vec{s} : electron spin

PRL 56, 2677 (2001)

Nuclear spin polarization acts as an effective magnetic field for electron spins

Dynamic nuclear polarization: spin injection causes nuclear spin polarization Lampel, PRL 20, 491 (1968)

AC Stark effect

Optical pulse below bandgap shifts the band gap (AC Stark effect) Circularly polarized pulse shifts one of the spin subbands, causing spin splitting

Science 292, 2458 (2001)

Topics covered in this talk

- Zeeman Hamiltonian
- Bloch sphere
- Larmor precession
- T_{1}, T_{2}, and T_{2}^{*}
- Bloch equation
- Optical selection rules
- Time-resolved

Kerr/Faraday rotation

- Hanle effect
- g-factor engineering
- spin-orbit interaction
- hyperfine interaction
- AC Stark effect

