Spin injection concept and technology

Ron Jansen ャンセン ロン

Spintronics Research Center National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan

Spin injection

Transfer of spin angular momentum from a ferromagnet to a non-ferromagnetic material

Normal metal <u>Semiconductor</u> Inorganic / organic Carbon-based

Non-equilibrium spin polarization

Semiconductors – Electronics Computing and amplification

First transistor

Processor chip

Very powerful technology Present everywhere in today's society

Workhorse – silicon field-effect transistor

Magnets – information storage

Magnetization is vector quantity

Preferred axis - binary information

Combining the best of both worlds

Ferromagnets

- Stable memory
- Fast switching
- High ordering temp.
- Spin transport

- Technology base (magnetic recording)

Semiconductors

Bandgap engineering -Carrier density & type -Electrical gating -Long spin lifetime -

Technology base - (electronics)

Semiconductor Spintronics

Can we develop spin-based transistors, switches, and logic circuits ? How to create, control and propagate spin information in semiconductor structures?

Outline

Part I Introduction and brief overview Key methods and devices for spin injection

Part II Electrical spin devices Injection Detection Transport Manipulation

Part III Hot topics Spin relaxation time in Si Magnitude spin accumulation Interface states Doping concentration

Creation of spin polarization in non-magnetic materials

Injection of spin-polarized charge current

- Hot-electron spin filtering
- From ferromagnetic tunnel contact

Injection of pure spin current (no charge)

- Spin pumping by magnetization dynamics
- Spin + thermoelectric effects (spin caloritronics)

Optical injection

Electric field + spin-orbit interaction

- Spin Hall effect etc.

Not in this talk

First electrical spin injection - 1992 current injection across vacuum tunnel barrier

Observation of spin-polarized-electron tunneling from a ferromagnet into GaAs S.F. Alvarado and P. Renaud, PRL 68, 1387 (1992).

Tunneling potential barrier dependence of electron spin polarization, S.F. Alvarado, PRL 75, 513 (1995).

Solid state devices for spin injection/detection

Key developments since 2007

2007 Jonker & Co. (2007) 2008 2009 Jansen & Co. (2009) Electric-field control of spin in Si 2DEG (without S-O interaction, low T, large B) 2010 Jansen & Co. (2010) Spin accumulation / transport in n-Ge 201 Shin & Co. KAIST (2011) & Wang & Co. UCLA (2011). Spin accumulation in p-Ge/MgO/Fe (low T) Saito & Co. AIST (2011).

Spin transport in Si (hot electrons, low T) Appelbaum & Co. (2007)

Spin injection in Si spin-LED (low T)

Electrical spin injection & detection in Si at 300 K (n- and p-type)

Non-local spin-valve Si channel, 300 K TDK/Osaka group (2011)

Spin injection & detection in Si at 300 K reproduced. Jonker & Co. (2011) Electrical spin injection & detection in GaAs (low T). Crowell & Co. (2007) Spin injection into silicon by tunneling Optical detection via electroluminescence

Jonker et al., Nature physics **3**, 542 (2007), see also Li & Dery, PRL **105**, 037204 (2010) for theory of spin-dependent optical transitions in Si

Electrical spin injection & detection in GaAs non-local geometry

Electrical spin injection & detection in Si non-local geometry

van 't Erve et al. APL 91, 212109 (2007)

Outline

Part I Introduction and brief overview Key methods and devices for spin injection

Part II Electrical spin devices Injection Detection Transport Manipulation

Part III Hot topics Spin relaxation time in Si Magnitude spin accumulation Interface states Doping concentration

Building blocks for electrical spin devices Example: the canonical spin-FET

Building blocks:

- 1) Injection of spin-polarized electrons into semiconductor
- 2) Transport spin information through the semiconductor
- 3) Detection of spin polarization
- 4) Control of spin polarization by gate electric field

Creation of spin polarization by electrical injection from a ferromagnetic tunnel contact

Transfer of spin information by spin-polarized tunneling

Creates spin accumulation

$$\Delta \mu = \mu^{\uparrow} - \mu^{\downarrow}$$

Conductivity mismatch in direct contact fundamental obstacle for diffusive spin injection

Depolarization of spin current predominantly in ferromagnet Almost no spin accumulation in semiconductor

 $\begin{array}{ll} \rho & \mbox{resistivity} \\ \lambda_{sd} & \mbox{spin-diffusion length} \end{array}$

Schmidt et al. PRB 62, R4790 (2000).

Spin injection using hot-electron spin filtering

Proposed in 2003 as a way to circumvent the conductivity mismatch R. Jansen, J. Phys. D **36**, R289 (2003).

Experimental demonstration in 2007 by Appelbaum et al. Nature 447, 295 (2007).

Spin transport in silicon using "hot" electrons undoped Si, low T

not a very practical geometrysmall current levels

Appelbaum *et al.* Nature **447**, 295 (2007) & PRL **99**, 177209 (2007).

Intermezzo: Spin-polarized tunneling

Minority spin states of Fe decay much faster into the MgO barrier:

Tunnel current from the ferromagnet across the thin insulator is highly spin-polarized

Spin injection by tunneling spin-dependent interface resistance

Spin injection into a semiconductor Schottky tunnel contacts

<u>Tunneling</u> across the narrow Schottky energy barrier between metal (Fe) and semiconductor (AlGaAs)

Optical spin detection: Hanbicki et al. APL 80,1240 (2002)

Spin injection via Schottky tunnel contact three-terminal geometry, single contacts

Three-terminal measurement Probes spins under a <u>single</u> magnetic contact

n-type GaAs, Lou et al. PRL 96, 176603 (2006) Spin manipulation by the Hanle effect Precession of spins in transverse magnetic field

Hanle line-width inversely proportional to spin lifetime

Spin polarization in n-type silicon at 300 K

 $n = 1.8 \cdot 10^{19} \text{ cm}^{-3}$ $100 \text{ x } 200 \text{ }\mu\text{m}^2 \text{ contacts}$ 3-terminal geometry

S.P. Dash et al. Nature 462, 491 (2009) Spin polarization in n-type Si at 300 K Reproduced with different barrier materials

NiFe / SiO₂ / n-Si Li / Erve / Jonker, Nat. Comm. 2, 245 (2011)

а 0 -0.05 ΔV_{3T} (mV) 500 K -0.1 400 K - 300 K - 250 K -0.15 150 K 10 K -0.2-2,000 2,000 -4.0004,000 0 Magnetic field B_Z (Oe)

CoFe / MgO / n-Si Jeon et al. APL 98, 262102 (2011)

Spin polarization in n-type silicon Control experiment with Yb or Au nanolayer

Standard Silicon / Al₂O₃ / Ni₈₀Fe₂₀

Control device Silicon / Al₂O₃ / Yb (2 nm) / Ni₈₀Fe₂₀

Standard Silicon / Al₂O₃ / Ni₈₀Fe₂₀

Control device Silicon / Al₂O₃ / Au (3 nm) / Ni₈₀Fe₂₀

Proof that signal is due to spin injection by tunneling

Patel et al. JAP 106, 016107 (2009)

Outline

Part I Introduction and brief overview Key methods and devices for spin injection

Part II Electrical spin devices Injection Detection Transport Manipulation

Part III Hot topics Spin relaxation time in Si Magnitude spin accumulation Interface states Doping concentration

Electrical detection of spin polarization Ferromagnetic tunnel contact - resistance is proportional to $\Delta \mu$

$$I^{\uparrow} = G^{\uparrow} \left(V - \frac{\Delta \mu}{2} \right)$$
$$I^{\downarrow} = G^{\downarrow} \left(V + \frac{\Delta \mu}{2} \right)$$

Hanle signal at constant tunnel current:

$$\Delta V = P * \Delta \mu/2$$

Tunnel spin polarization:

$$\mathsf{P} = \frac{\mathsf{G}^{\uparrow} - \mathsf{G}^{\downarrow}}{\mathsf{G}^{\uparrow} + \mathsf{G}^{\downarrow}}$$

p.s. Applies to non-local detection (I = 0)and to 3-terminal detection $(I \neq 0)$ Spin detection in two-terminal geometry criteria for observing magnetoresistance

Spin lifetime and high-frequency operation Two-terminal MR device

Outline

Part I Introduction and brief overview Key methods and devices for spin injection

Part II Electrical spin devices Injection Detection Transport Manipulation

Part III Hot topics Spin relaxation time in Si Magnitude spin accumulation Interface states Doping concentration

Spin transport Diffusion, drift, relaxation and precession of spin

Time evolution of spin density S

$$\overrightarrow{\omega_L} = (\omega_x, \omega_y, \omega_z) = (g\mu_B/\hbar) (B_x, B_y, B_z)$$

Larmor precession frequency

Spin transport Spin-diffusion and spin-diffusion length

Spin-diffusion length (L_{SD}):

Distance spin polarization can diffuse during spin lifetime

Spin transport Measurement of spin-diffusion length – (1) direct

Direct: measure spin signal as a function of <u>separation</u> d between 2 FM contacts (multiple devices needed).

Spin transport Measurement of spin-diffusion length – (2) indirect

Indirect: Measure the Hanle curve in a transport configuration Fit with equation for spin-precession/diffusion

Spin transport Measurement of spin-diffusion length – (2) indirect

Spin transport Measurement of spin-diffusion length – (3) indirect

Indirect:

- Measure Hanle curve in 3-terminal device $\Rightarrow \tau_s$
- Measure charge mobility + use Einstein relation \Rightarrow D

- Fast (single device)
- Good SNR (large area contact)
- Probes spin-diffusion under contact

Outline

Part I Introduction and brief overview Key methods and devices for spin injection

Part II Electrical spin devices Injection Detection Transport Manipulation

Part III Hot topics Spin relaxation time in Si Magnitude spin accumulation Interface states Doping concentration

Operation of the spin-FET Datta and Das

This gate action requires spin-orbit interaction

- Too weak in silicon, organics, graphene etc.
- Doesn't scale well (precession angle per unit length, given by spin-orbit strength)

Electric field control of spin polarization in silicon quantum wells

- Control spin polarization magnitude
- No spin-orbit interaction involved

R. Jansen et al. Nature Materials 9, 133 (2010)

Outline

Part I Introduction and brief overview Key methods and devices for spin injection

Part II Electrical spin devices Injection Detection Transport Manipulation

Part III Hot topics Spin relaxation time in Si Magnitude spin accumulation Interface states Doping concentration

Spin lifetime in n-type Si at room temperature

No or very low doping

7 – 10 ns at 300 K Elliott-Yafet mechanism Spin-orbit + <u>phonons</u>

heavily doped (1019 cm-3)

1 ns at 300 K (ESR), Elliott-Yafet mechanism Spin-orbit + <u>impurity</u> scattering

Cheng, Wu, Fabian, PRL 104, 016601 (2010).

Spin lifetime in n-type Si from Hanle effect Consistent results for different tunnel barriers

Spin lifetime extracted from Hanle effect 3-terminal (3T) and non-local (NL) devices

spin lifetime	т	FM	tunnel oxide	semiconductor	carrier density at 300 K	technique	reference
140 ps	300 K	NisFe ₂	Al_2O_3	n-type Si	$1.8 \times 10^{19} \text{ cm}^{-3}$	3T	Dash et al. Nature 462, 491 (2009)
140 ps	300 K	Ni ₈ Fe ₂	Al_2O_3	n-Si with Cs	$1.8 \times 10^{19} \text{ cm}^{-3}$	3T	Dash et al. Nature 462, 491 (2009)
290 ps	300 K	Ni	Al_2O_3	n-type Si	$1.8 \times 10^{19} \text{ cm}^{-3}$	3T	Dash et al. ArXiv:1101.1691 (2011)
80 ps	300 K	Co	Al_2O_3	n-type Si	$1.8 \times 10^{19} \text{ cm}^{-3}$	3T	Dash et al. ArXiv:1101.1691 (2011)
60 ps	300 K	\mathbf{Fe}	Al_2O_3	n-type Si	$1.8 \times 10^{19} \text{ cm}^{-3}$	3T	Dash et al. ArXiv:1101.1691 (2011)
125 ps	300 K	Ni ₈ Fe ₂	SiO_2	n-type Si	$3 \times 10^{19} \text{ cm}^{-3}$	3T	Li/Erve/Jonker, Nat. Comm. 2, 245 (2011)
155 ps	300 K	CoFe	MgO	n-type Si	$2.5 \times 10^{19} \text{ cm}^{-3}$	3T	Jeon et al. APL 98, 262102 (2011)
1.3 ns	300 K	Fe	MgO	n-type Si	$5 \times 10^{19} \ {\rm cm^{-3}}$	NL	Suzuki et al. APEX 4, 023003 (2011)
135 ps	10 K	NisFe ₂	Al_2O_3	n-type Si	$1.8 \times 10^{19} \mathrm{~cm^{-3}}$	3T	Dash et al. Nature 462, 491 (2009)
185 ps	10 K	NisFe ₂	Al_2O_3	n-Si with Cs	$1.8 \times 10^{19} \text{ cm}^{-3}$	3T	Dash et al. Nature 462, 491 (2009)
125 ps	10 K	NisFe ₂	SiO_2	n-type Si	$3 \times 10^{19} \text{ cm}^{-3}$	3T	Li/Erve/Jonker, Nat. Comm. 2, 245 (2011)
100 ps	10 K	$\rm Co_9Fe_1$	SiO_2	n-type Si	$3 \times 10^{19} \text{ cm}^{-3}$	3T	Li/Erve/Jonker, Nat. Comm. 2, 245 (2011)
190 ps	10 K	CoFe	MgO	n-type Si	$2.5 \times 10^{19} \text{ cm}^{-3}$	3T	Jeon et al. APL 98, 262102 (2011)
3.1 ns	25 K	Co_6Fe_4	Schottky	n-type Si	$2{\times}10^{18}~{\rm cm}^{-3}$	3T	Ando et al. APL 99, 012113 (2011)
0.9 ns	5 K	Fe	Al_2O_3	n-type Si	$2 \times 10^{18} \text{ cm}^{-3}$	NL	Erve et al. IEEE Tr. Elec. Dev. 56, 2343 (2009)
10 ns	10 K	Fe	MgO	n-type Si	$5 \times 10^{19} \text{ cm}^{-3}$	NL	Suzuki et al. APEX 4, 023003 (2011)
9 ns	8 K	Fe	MgO	n-type Si	$1 \times 10^{19} \text{ cm}^{-3}$	зT	Sasaki et al. APL 98, 012508 (2011)
			-				

Extrinsic contributions to spin relaxation proximity of magnetic tunnel contact

Spin precession in local magnetostatic fields arising from roughness

Spin relaxation near magnetic tunnel interface role of ferromagnetic electrode

Injected spins feel presence of the ferromagnet !

 \Rightarrow <u>Apparent</u> reduction of spin lifetime

$$Ni_{80}Fe_{20} \rightarrow \mu_0 M_{sat} = 0.9 T$$

 $Co \rightarrow \mu_0 M_{sat}$ = 1.8 T

$$Fe \rightarrow \mu_0 M_{sat} = 2.2 T$$

T = 300 K n-Si = $1.8 \cdot 10^{19}$ cm⁻³ (As)

Extrinsic contributions to spin relaxation spin precession in local magnetostatic fields

Inhomogeneous spin precession axis and frequency

Hanle effect and inverted Hanle effect

Inverted Hanle effect – a generic feature

Extracting spin lifetime from Hanle effect Be careful !

Outline

Part I Introduction and brief overview Key methods and devices for spin injection

Part II Electrical spin devices Injection Detection Transport Manipulation

Part III Hot topics Spin relaxation time in Si Magnitude spin accumulation Interface states Doping concentration

Magnitude of the spin accumulation spin resistance

Spin current:

$$J_s = \frac{e(n^{\uparrow} - n^{\downarrow})}{\tau_s}$$

Spin resistance:

$$r_s = \frac{\Delta \mu}{J_s} = \frac{\tau_s}{e^2 \left(\frac{\partial n}{\partial E_F}\right)}$$

Use Einstein relation:

$$D = \frac{\mu_e n}{e\left(\frac{\partial n}{\partial E_F}\right)}$$
in Ωm^3
in Ωm^3
Resistivity spin-diffusion length

Spin resistance of semiconductor – <u>large</u> contact

Spin resistance of semiconductor – <u>small</u> contact

Spin resistance: $r_{s} = \frac{\rho L_{sd}^{2}}{L_{sd} W_{Y} L_{sd}} (\Omega)$ Areal spin resistance: $r_{s} = \rho L_{sd} \frac{W_{X}}{L_{sd}} (\Omega)$ $r_{s} = \rho L_{sd} \frac{W_{X}}{L_{sd}} (\Omega)^{2}$ Large contact
Geometric correction < 1 Magnitude of the spin accumulation Comparison with standard model for spin resistance

Area spin resistance in standard model $r_s = \rho L_{sd} \sim 0.01 \text{ k}\Omega\mu\text{m}^2$ $3 \text{ m}\Omega\text{cm} > 230 \text{ nm}$

> Standard model does not match with the experimental data

Magnitude of the spin accumulation Reproduced in different systems

NiFe / SiO₂ / n-Si Li / Erve / Jonker, Nat. Comm. 2, 245 (2011)

CoFe / MgO / n-Si Jeon et al. APL 98, 262102 (2011)

 $\begin{array}{c|c}
0.24 & T=300 \text{ K} \\
\text{Lorentzian} \\
\text{fit} \\
0.16 \\
0.08 \\
1=+114 \mu \text{A} \\
0.00 \\
V_{b}=+0.15 \text{ V}
\end{array}$

Spin-RA ~ 1.2 k $\Omega\mu m^2$

Spin-RA ~ 4 - 5 k $\Omega\mu$ m²

Also larger than theory: $r_s = \rho L_{sd} \sim 0.01 \text{ k}\Omega\mu\text{m}^2$

Size of spin accumulation – experiment vs theory

From: Li / Erve / Jonker, Nature Comm. 2, 245 (2011)

Comparison of Hanle signal amplitude with theory. The amplitude of the Hanle signal agrees well with that expected from the theory of spin injection into a semiconductor channel in the diffusive regime^{13,14}, indicating that spin accumulation occurs in the semiconductor channel rather than in localized interface states. The amplitude of the Hanle signal at 300 K for sample A, $\Delta V_{3T}(B_z=0)\sim0.04$ meV, corresponds to a spin resistance $R_s = \Delta V_{3T}(B_z=0)/I\sim0.08 \Omega$, or equivalently a spin resistance–area product $R_s \cdot A \sim 1,200 \Omega \mu m^2$ for the $150\times100 \mu m^2$ contact. The value at 10 K is $R_s \cdot A \sim 6,000 \Omega \mu m^2$. These are in excellent agreement with the value predicted by theory^{12,13,14} as given by $r_1 = (\rho L_{SD})(W/w) \sim 3,000 \Omega \mu m^2$ using parameters meas-

Geometric correction (750 !) cannot be used for large area contact with W_x , $W_y >> L_{SD}$. Correct value $r = \rho L_{sd} \sim 10 \Omega \mu m^2$ Theory and experiment <u>not</u> in agreement ! Large spin accumulation - possible explanations

1) Local magnetostatic fields (roughness) \Rightarrow Hanle data underestimates τ_s and thus L_{sd}

2) Inhomogeneous tunnel current density ⇒ real tunnel area << geometric area

3) Two-step tunneling via localized interface states

- proposed by Tran et al. - PRL 102, 036601 (2009)

- already ruled out in Dash et al. Nature 462, 491 (2009)

Outline

Part I Introduction and brief overview Key methods and devices for spin injection

Part II Electrical spin devices Injection Detection Transport Manipulation

Part III Hot topics Spin relaxation time in Si Magnitude spin accumulation Interface states Doping concentration

Two-step tunneling via localized interface states Potential source of enhanced spin accumulation

-

Proposal by Tran et al. PRL 102, 036601 (2009):

- <u>Two-step (sequential)</u> tunneling via localized interface states
- Spin accumulation in localized states can be larger than in semiconductor channel
- Only if bulk bands and interface states are well separated by a large resistance (Schottky) barrier

p.s. to date no experimental confirmation of this mechanism in spin injection

Transport and localized states

Two-step tunneling via localized interface states Basic equations and parameters

$$\Delta \mu^{ls} = \left\{ \frac{r_{ls} \left(r_b + r_{ch} \right)}{r_{ls} + r_b + r_{ch}} \right\} \, 2 \, P_G \, I$$

$$\Delta \mu^{ls} = \Delta \mu^{ch} \left\{ 1 + \frac{r_b}{r_{ch}} \right\}$$

$$I_s^{ch} = \left\{ \frac{r_{ls}}{r_{ls} + r_b + r_{ch}} \right\} P_G I$$

- r_{Is} Spin resistance of localized states
- r_{ch} Spin resistance of semiconductor channel
- r_b Resistance between localized states and semiconductor

Enhancement factor: spin accumulation in localized states (ls) can be larger than in semiconductor channel (ch)

No detrimental effect on spin current into semiconductor if r_{ls} is larger than Schottky barrier resistance r_{b} . Spin accumulation in interface states Upper limit to the enhancement set by Schottky barrier

Test of spin accumulation in interface states Schottky barrier reduction by Cs

Schottky barrier $\Phi_{\rm B} \sim 0.7 - 0.8 \text{ eV}$ Narrow width (heavily doped Si) Strongly reduced Schottky barrier $\Phi_{\rm B} \sim 0.2 - 0.3 \text{ eV}$ Width reduced correspondingly

Effect of Cs: see R. Jansen et al., PRB 82, 241305(R) (2010).

Ruling out spin accumulation in interface states

1) No significant change with Cs

2) With Cs still large spin-RA in 1-10 k $\Omega\mu m^2$ range.

But with Cs the r_b is much smaller than this (r_b should be 40 $\Omega\mu m^2$ at best)

Data with Cs cannot be explained by enhancement due to surface states

Outline

Part I Introduction and brief overview Key methods and devices for spin injection

Part II Electrical spin devices Injection Detection Transport Manipulation

Part III Hot topics Spin relaxation time in Si Magnitude spin accumulation Interface states Doping concentration

The carrier depletion issue

Reduced depletion in FM/Semiconductor contacts heavily doped surface region

Fe GaAs

Grown by MBE

Used by many groups for GaAs and more recently for Si.

Tuning of the FM/Si tunnel contact resistance with low work function ferromagnets

Engineering spin tunnel contacts to silicon by Cs

R. Jansen et al., PRB 82, 241305(R) (2010).

EF-TEM

Electrical creation of spin polarization in Si medium donor impurity concentration

Without Cs:

- Strong diode
- No Hanle signal

With Cs:

- Schottky barrier suppressed
- Hanle signal !

Suppression of carrier depletion <u>enables</u> spin injection & detection

R. Jansen et al., PRB 82, 241305(R) (2010).
Summary

Exciting progress

- In GaAs, recently also in Si & Ge and at 300 K

Basic understanding of spin injection, but

- Many aspects poorly or not understood
- Theories not yet confirmed experimentally

Outlook

Challenges:

- Electric field control without spin-orbit
- Device design

Opportunities by new approaches to spin injection

- Spin pumping from magnetization dynamics
- Thermal spin current (spin caloritronics)