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Spin qubits composed of either one or three electrons are realized in a quantum dot formed at a Si/SiO2 interface
in isotopically enriched silicon. Using pulsed electron-spin resonance, we perform coherent control of both types
of qubits, addressing them via an electric field dependent g factor. We perform randomized benchmarking and
find that both qubits can be operated with high fidelity. Surprisingly, we find that the g factors of the one-electron
and three-electron qubits have an approximately linear but opposite dependence as a function of the applied dc
electric field. We develop a theory to explain this g-factor behavior based on the spin-valley coupling that results
from the sharp interface. The outer “shell” electron in the three-electron qubit exists in the higher of the two
available conduction-band valley states, in contrast with the one-electron case, where the electron is in the lower
valley. We formulate a modified effective mass theory and propose that intervalley spin-flip tunneling dominates
over intravalley spin flips in this system, leading to a direct correlation between the spin-orbit coupling parameters
and the g factors in the two valleys. In addition to offering all-electrical tuning for single-qubit gates, the g-factor
physics revealed here for one-electron and three-electron qubits offers potential opportunities for different qubit
control approaches.
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Silicon is known to have small spin-orbit coupling (SOC),
a beneficial fact for silicon quantum computing, since charge
noise is largely decoupled from information stored in the
spin [1]. Furthermore, silicon can be isotopically enriched and
chemically purified to 28Si, thereby removing nuclear-spin
background fluctuations and so silicon is often referred to as
a semiconductor vacuum [2]. These two facts have motivated
intense research on silicon qubits, leading to recent realizations
of single-qubit [3–7] and two-qubit [8] logic gates. Despite the
small SOC, the tunability of the g factor via gate-controlled
electric fields allows one to electrostatically turn on and off the
spin rotations that constitute single-qubit gates [7–9], thereby
providing an important tool for quantum computation.

The low-energy subspace in silicon quantum dot (QD)
systems is governed by two spin-degenerate valley states.
When these valley states are quasidegenerate, qubit operation
becomes complex [6], and coupling qubits is even more
challenging [10]. However, the valley states can be separated
using a vertical electric field and the sharp potential of
an interface, and their energy separation can be electrically
controlled over several hundreds of μeV [7,11]. While one-
electron spin qubits are naturally operated in the lowest valley
state [6,7], it is intriguing to consider the performance of
qubits operated in the higher valley state, which has a long
spin lifetime when orbital relaxation is suppressed [11]. When
spatial confinement in the QD is strong, the orbital excited
states are lifted high in energy and qubit operation in the upper
valley state is possible by populating three electrons in the
quantum dot, assuming a single-particle description (see, e.g.,
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Refs. [10,12]). In this mode two electrons form a singlet in
the lower valley state and the third electron is operated in the
upper valley [see Figs. 1(a) and 1(b)]. It has been suggested
that such multielectron qubits could enhance the gate fidelity,
due to partial screening of electrical noise [13].

Here we study the valley structure of silicon and spin-
orbit coupling by high-fidelity operation of one- and three-
electron spin qubits, operated in the lower and upper valley,
respectively. Using electron-spin resonance (ESR) we map out
the qubit frequency as a function of the applied perpendicular
electric field. We experimentally demonstrate and theoretically
explain how inter-valley spin-orbit coupling at the Si/SiO2

interface results in an opposite dependence of the g factor for
the two valleys. Via the direct g-factor coupling to the electric
field the three-electron (upper valley) qubit is about twice as
sensitive to external field fluctuations compared to the one-
electron qubit, leading to a different decoherence mechanism
than discussed in Ref. [13] and resulting in a lower three
electron-qubit fidelity. Randomized benchmarking supports
this observation, while showing that both qubit systems are
capable of fidelities above 99%, approaching the surface code
thresholds for fault-tolerant quantum computing [14].

The QD structure is fabricated on an epitaxially grown, iso-
topically purified 28Si epilayer with a residual concentration of
29Si at 800 ppm [2] using multilevel gate stack silicon metal-
oxide-semiconductor (Si MOS) technology [15]; see Fig. 1.
The charge stability diagram of the quantum dot is shown in
Fig. 1(c). From a Ramsey sequence on the three-electron qubit
(see Fig. 2) we find a dephasing time T ∗

2 = 70 μs, which
is slightly less than we have previously measured for the
one-electron qubit, which had T ∗

2 = 120 μs [7].
We have demonstrated electric-field control over the reso-

nance frequency νESR of the one-electron qubit [7], showing
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FIG. 1. (Color online) (a) Schematic representation of the quan-
tum dot system. The quantum dot is defined using the confinement
gate CG and plunger gate PG and the yellow shading represents the
regions where electrons are accumulated, with Fz the perpendicular
electric field direction. ESR control is via a dc magnetic field
B0 = 1.4 T (in the Si [110] in-plane direction) and an ac magnetic
field B1. (b) The quantum dot qubit can be operated using the spin
states of one electron, or using three electrons, where two electrons
(blue) occupy the lowest energy valley state and the third electron
(red) is in the higher energy valley state. (c) Charge stability diagram
showing the electron occupancy N in the quantum dot, measured with
a nearby SET.
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FIG. 2. (Color online) Demonstration of qubit control of the
three-electron qubit. (a) 2D color map showing Rabi control of
the spin-up fraction f↑, by varying the microwave pulse length
and the microwave driving frequency νESR. We have subtracted a
reference frequency ν0 = 39.045 GHz (corresponding to g = 1.9908)
for clarity. (b) Ramsey fringes, obtained by varying the waiting time
between two ESR π/2 pulses. The decay in the spin-up fraction
f↑ corresponds to T ∗

2 = 70 μs. The confinement gate voltage is
VC = −0.2 V.

tunability over several MHz that appears linear in electric
field, corresponding to more than 3000 times the 2.4-kHz
ESR linewidth. We find that spin-valley mixing of the QD
eigenstates due to interface (local) roughness [11] would
predict a modification of the electron g factor that is two orders
of magnitude smaller than is found experimentally, together
with a nonlinear dependence close to the anticrossing point of
the spin-valley states that we do not observe.

Here we propose and analyze a model where the g-factor
modification proceeds via intervalley spin-flip tunneling,
mediated by the strong z confinement at the interface. The
Si/SiO2 (001) interface of silicon MOS quantum dots can
be described with a Hamiltonian that consists of a bulk
term H0 and an interface term Hif . The reduction of the
bulk Si crystal symmetry at the interface, in the presence
of strong perpendicular electron confinement induced by an
applied electric field Fz, lifts the sixfold valley degeneracy,
leaving two low-lying � valleys at ±k0z. These are then
mixed via enhanced intervalley tunneling due to the strong z

confinement at the interface [16,17]. The consequent effective
two-valley Hamiltonian acts on the four-component vector
[�ẑ,↑(r),�ẑ,↓(r),�−ẑ,↑(r),�−ẑ,↓(r)]T ≡ �(r), where the bulk
part (spin and valley degenerate) is given by

H0 =
⎡
⎣ ∑

j=x,y,z

�
2k̂2

j

2mj

+ Ux,y + Uz

⎤
⎦ × Î4 (1)

with the quasimomentum operators k̂j ≡ −i∂j ; and Ux,y =
mt

2 ω2
0(x2 + y2) and Uz = |e|Fzz are the in-plane and perpen-

dicular confinement electron potentials, respectively. Here ml ,
mt are the Si effective �-valley electron masses, |e| is the
electron charge, and � is the reduced Planck constant. Taking
into account the large band offset of Si/SiO2, the interface term
is

Hif = − �
2

2Rml

δ(z − z0) − i
�

2

2ml

δ(z − z0)k̂z

+ δ(z − z0)V̂if (k), (2)

where R is a parameter with dimension of length, characteriz-
ing an abrupt interface [18,19], and |R| � lz � lD; here lz =
(�2/2ml|e|Fz)1/3 and lD = (�/mtω0)1/2 are the perpendicular
and in-plane confinement lengths (assuming much stronger ẑ

confinement). For R ≈ 0 the interface Hamiltonian [Eq. (2)]
corresponds to the standard infinite boundary condition (BC)
�(z) |z=z0= 0, while for finite R it generates spin and valley
mixing at the interface, also preserving the hermiticity of the
Hamiltonian in the half space [18,20], z � z0. Following the
symmetry reasoning of Refs. [21,22] the spin-valley mixing
interface matrix V̂if (k) can be expressed via the C2v invariants
HR(k) = σxky − σykx , HD(k) = σxkx − σyky , resulting in

V̂if (k) =
[

A(k) V Î2 + B(k)

V ∗Î2 + B†(k) A(k)

]
. (3)

In Eq. (3) the 2×2 block-diagonal element A(k) ≡
sD HD(k) + sR HR(k) corresponds to intravalley spin-flipping
transitions, while the off-diagonal elements are related
to intervalley tunneling (in momentum space) with no
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spin-flipping amplitude V ≡ |V |eiφV with phase [22,23], or
with a spin-flipping process, B(k) ≡ χD HD(k) + χR HR(k).

Since experimentally the valley splitting (∼|V |) is generally
large with respect to the spin-flipping terms, we diagonalize
with respect to the leading V -matrix element and via a unitary
transformation we find

V̂ U
if (k) =

[
|V | + A + 1

2Bd
1
2Boff

H.c. −|V | + A − 1
2Bd

]
. (4)

This matrix is approximately diagonal in the valley ba-
sis |v1〉, |v2〉, with a calculated valley splitting energy
EVS = 2|V |R2|ϕ′(0)|2 = 2|V |R2l−3

z ∝ Fz. We neglect the
off-diagonal contribution Boff ≡ B − B†e2iφV in Eq. (4), since
it is suppressed as ∼1/EVS and EVS is typically several
hundreds of μeV in MOS quantum dots [7,11]. Thus, in the
valley subspaces |v1〉, |v2〉, one can consider two independent
boundary conditions as in Eq. (2), with spin-flipping inter-
face matrices V̂v1,v2 = A ∓ 1

2Bd ≡ A ∓ 1
2 (Be−iφV + B†eiφV ),

in which the intervalley spin-flip tunneling element changes
sign between v1 and v2.

The effective two-dimensional (2D) spin-orbit Hamilto-
nians [proportional to the Rashba and Dresselhaus forms,
HR(k), HD(k)] are calculated by recasting the BC, Eq. (2),
to a standard one via a suitable unitary transform, �̃ |z=z0≡
̂bc� |z=z0= 0, and obtaining a smooth perturbing Hamilto-
nian: δH  R2 2ml

�2 V̂if (k)∂zUz.
The corresponding 2D SOC parameters change due to sign

flipping:

αR;v1,v2 = [sR ∓ |χR| cos(φR − φV )] R2|ϕ′(0)|2,
(5)

βD;v1,v2 = [sD ∓ |χD| cos(φD − φV )] R2|ϕ′(0)|2.

The scaling of the spin-orbit terms with the electric field Fz is
linear, as is the valley splitting, EVS. Here, we have introduced
the phases φR and φD for the Rashba and Dresselhaus terms
and ϕ′(0) is the derivative of the z component of an eigenstate
of the bulk Hamiltonian H0. These results are similar to the
strong-field limit results of Ref. [22].

Explicit calculation of the g-factor change, based on the
interface Hamiltonian Eq. (2) and the fact that an in-plane
magnetic field mixes the perpendicular and in-plane motion,
shows that the in-plane interface g-factor renormalization δgif

is proportional to αR , βD; nonparabolicity effects [24] are
estimated to be much smaller, to be presented elsewhere. We
find for the magnetic field parallel to the [110] direction

δgif
v1,v2 = − (αR;v1,v2 − βD;v1,v2)|e|

�μB
〈z〉, (6)

where μB is the Bohr magneton and 〈z〉  1.5587 lz is an
average of the z motion in the lowest subband; see Eq. (1).
The g factor scales as F

2/3
z , which is close to a linear scaling

over the range (∼10%) of the experimentally applied electric
fields; see Fig. 3(b).

We therefore expect from Eq. (6) that the renormalization
δg will be of opposing sign for the two valleys, following the
sign change of the SOC parameters in Eq. (5). In particular, the
change will be exactly opposite for zero intravalley spin-flip
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FIG. 3. (Color online) (a) Magnetic field dependence of the
resonance frequency of the one- and three-electron qubit, with
Fz = 28.25 MV/m. The experimental data of both qubit systems
has been subtracted by the g1e factor for comparison and we have
calibrated the dc magnetic field using the crossing point of the one-
and three-electron qubit resonance frequencies. We find g1e = 1.9975
and g3e = 1.9912. (b) Gate tuned electric field control over the valley
g factor at B0 = 1.4015 T.

coupling, sR,sD = 0:

δgv1 = −δgv2. (7)

Relatively smaller corrections due to nonzero intravalley spin
flipping, sR,sD �= 0, will generally violate Eq. (7), leaving the
g-factor changes opposite in sign, but with different absolute
value, |δgv1| �= |δgv2|.

To observe this experimentally, we control the quantum
dot electric field via the plunger gate PG and the confinement
gate CG; see Fig. 1. In Fig. 3(a) we show the magnetic field
dependence and in Fig. 3(b) we show electrical control over
the qubit resonance frequency νESR. The opposite electric-field
dependence of the g factor for the two valleys is in qualitative
agreement with the prediction of Eq. (7). Since the resonance
frequency of the one-electron qubit increases with the electric
field, while the resonance frequency of the three-electron
qubit decreases [see Fig. 3(b)], we infer from Eq. (6) that the
Rashba and Dresselhaus contributions are in this experiment
subject to the constraints: δχinterval ≡ |χR| cos(φR − φV ) −
|χD| cos(φD − φV ) > 0, δsintraval ≡ sR − sD < 0. The change
in sign of δg is evidence that the intervalley spin-flip contribu-
tions dominate the intravalley spin-flip processes and from the
δg dependence we estimate the ratio δχinterval/|δsintraval| ≈ 2.6.
This observation is consistent with tight-binding calculations
on SiGe quantum wells [22], which predict that the intervalley
transitions can be about an order of magnitude larger than
the intravalley transitions. The values and signs of the SiGe
parameters, as substituted in Eqs. (5) and (6), reproduce also
the correct qualitative behavior of δgv1 (δgv2) that increases
(decreases) with the applied electric field Fz. However, the
experimental ratio of the g-factor changes is |δgv2|/|δgv1| 
2.2, while that calculated with the Si/SiGe parameters is ∼1.
Such differences can be expected due to the greater band-edge
offset in Si/SiO2, disorder [25], and built-in electric fields.

In order to explore the qubit performance, we have per-
formed (interleaved) randomized benchmarking (RB) [26,27]
on the one-electron qubit [7] and three-electron qubit, and
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FIG. 4. (Color online) Clifford based randomized benchmark-
ing. (a) Sequence fidelity as a function of the sequence length and (b)
schematic representation of randomized benchmarking, where H is
an interleaved test gate. In (a), the black filled circles correspond to
standard randomized benchmarking and the green open circles to the
average of the single qubit gates [I,±X,± 1

2 X,±Y,± 1
2 Y ], obtained by

interleaved randomized benchmarking and normalizing the sequence
length with 2.875/1.875, such that it matches the average Clifford
gate length. Both data sets are fitted with a two-fidelity model (see
text) and the results are shown in (c), where the standard error is
smaller than the corresponding gate error.

all results are shown in Fig. 4. In order to eliminate the
fitting parameter BRB, which is a constant offset parameter
present in standard RB fits, we plot the sequence fidelity
combination F = F↑ + F↓ − 1, which approaches zero for
infinite sequence length when the assumptions of RB hold [28].
When the noise is gate independent, an exponential decay
is expected. However, when low-frequency noise is present,
nonexponential decays arise [28]. This nonexponential decay
is due to slow drifts in the resonance frequency, such that the
time ensemble is averaged over sequences with small detuning
(resulting in a high fidelity, Fhigh, and a slow exponential decay)
and large detuning (resulting in a low fidelity, Flow, and a fast
exponential decay).

When such low-frequency noise is present, the fidelity
varies over time and we use a two-fidelity model to analyze
the data [28]. We have fitted the data using F = A(pm + qm),
where A quantifies the state preparation and measurement
(SPAM) error and p and q are two polarization parameters.
In Fig. 4(c) we show the corresponding fidelities. The three-
electron qubit has a relatively low fidelity when the noise
causes a large detuning (Flow ≈ 97%). However, when the
microwave driving frequency is on resonance, both qubits
have a fidelity above thresholds for fault tolerant quantum
computing [14]; the average single-gate fidelity being Fhigh =

99.9% for the one-electron qubit system and Fhigh = 99.3%
for the three-electron qubit system. While the three-electron
qubit initially shows a nonexponential decay, for higher m

the decay approaches a pure exponential, indicating that
low-frequency noise has little impact in this range. We expect
similar calibration errors for the one- and three-electron qubits,
since the same setup is used. The exponential decay of the
three-electron qubit is therefore likely due to high-frequency
noise.

The faster decay of the sequence fidelity of the three-
electron vs one-electron qubit is consistent with a larger sen-
sitivity to electrical noise, as revealed by the larger frequency
shift with gate voltage, |δν3e/δV | ≈ 2.2|δν1e/δV |, shown in
Fig. 3(b). The frequency detuning caused by electrical noise
results in rotations around the z axis of the qubit Bloch sphere
and perpendicular to the Rabi driving axis. In the small-angle
approximation, this would result in an error rate that is around
five times larger for the three-electron qubit, comparable
with the difference in fidelities between the one-electron and
three-electron qubits. It is therefore likely that both qubits are
ultimately limited by high-frequency electrical noise, possibly
due to charge noise from the aluminium-SiO2 interface [29].

The realizations of single- and two-qubit gates using
isotopically purified silicon quantum dots [7,8] are now
revealing the early promises of silicon as a platform for
quantum computation and the possibility of qubit operation
with either one-electron or three-electrons allows more flexi-
bility in scaling these systems. The ultranarrow spin-resonance
linewidth of these qubits has pushed silicon into a regime
where the weak spin-orbit coupling in silicon becomes not
only visible, but also forms a different tool to control the
spin states, as shown here. Further qubit optimization may be
achieved by reducing the spin-orbit interaction, for example by
changing the magnetic field amplitude or orientation, while the
remarkably large electric-field control in Si MOS quantum dots
provides additional motivation to explore spin-orbit coupling
in silicon for qubit control and spin manipulation.
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