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Abstract—A strong dependence of the thermopower of germanium crystals on the isotopic composition is
experimentally found. The theory of phonon drag of electrons in semiconductors with nondegenerate statistics
of current carriers is developed, which takes into account the special features of the relaxation of phonon
momentum in the normal processes of phonon–phonon scattering. The effect of the drift motion of phonons on
the drag thermopower in germanium crystals of different isotopic compositions is analyzed for two options of
relaxation of phonon momentum in the normal processes of phonon scattering. The phonon relaxation times
determined from the data on the thermal conductivity of germanium are used in calculating the thermopower.
The importance of the inelasticity of electron–phonon scattering in the drag thermopower in semiconductors is
analyzed. A qualitative explanation of the isotope effect in the drag thermopower is provided. It is demonstrated
that this effect is associated with the drift motion of phonons, which turns out to be very sensitive to isotopic
disorder in germanium crystals. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Recently, high-quality single crystals of germanium
of different chemical compositions have been success-
fully grown, including a uniquely pure (both chemi-
cally and isotopically) crystal with 99.99% 70Ge isoto-
pic enrichment [1], hereinafter referred to as 70Ge
(99.99%). Experimental investigations of the thermal
conductivity [2, 3] of these crystals have revealed that,
for monoisotopic samples of 70Ge (99.99%), the maxi-
mal values of thermal conductivity are an order of mag-
nitude higher than those for crystals with natural isoto-
pic composition. It is evident that this effect is associ-
ated with the increase in the free path of thermal
phonons because of the decrease in the scattering by
“impurity” isotopes; the normal processes of phonon–
phonon scattering play an important part in the case of
isotopically pure crystals at temperatures in the vicinity
of the maximum of thermal conductivity [3–5]. A vari-
ation in the isotopic composition must also affect the
thermoelectric phenomenon of the phonon drag ther-
mopower αph(T), which explicitly depends on phonon
1063-7761/03/9606- $24.00 © 21078
lifetime. Therefore, a decrease in the degree of isotopic
disorder must further result in an increase in the abso-
lute values of the phonon drag thermopower. However,
the Herring theory [6] predicts a very weak dependence
of αph(T) on the impurity concentration in the case of a
fairly pure semiconductor (see also [7–9]). Within a
standard one-parameter approximation, the phonon
relaxation rate in the normal processes (N processes) of
phonon–phonon scattering was included in the total
phonon relaxation rate, which was the only parameter
defining the nonequilibrium phonon distribution func-
tion. This approach is justified in the case of “impure”
semiconductors, when the phonon relaxation rate in the
N processes, νphN(q), is much lower than the phonon
relaxation rate in the resistive processes of scattering,
νphR(q), caused by the phonon–phonon scattering in the
umklapp processes, and from the defects and bound-
aries of the sample. In the opposite extreme case of
fairly pure semiconductors, one must take into account
the phonon system drift caused by the N processes of
phonon–phonon scattering [10, 11].
003 MAIK “Nauka/Interperiodica”
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In nondegenerate conductors, the electrons interact
only with long-wavelength phonons whose wave vector
is much less than the wave vector of thermal phonons
making the main contribution to thermal conductivity.
Because the probability of isotopic scattering of a
phonon is proportional to the fourth power of its wave
vector q, the thermopower calculated within a one-
parameter approximation turns out to be insensitive to
the degree of isotopic disorder. Kozlov and Nagaev [12]
called attention to the anomalies of thermopower aris-
ing in such a situation as long as 30 years ago. They
have demonstrated that, in the case of very perfect crys-
tals, the thermal phonon drag of long-wavelength
phonons may cause anomalously high values of ther-
mopower. In contrast to the Herring thermopower, this
thermopower (two-stage drag thermopower) is inversely
proportional to the impurity concentration [13] and is
closely associated with the mechanism of relaxation of
long-wavelength phonons from thermal phonons in the
normal processes of phonon–phonon scattering.

The first attempt at detecting the effect of isotopic
phonon scattering on the thermopower was made by
Oskotskii et al. [14], who investigated the thermal con-
ductivity and thermopower of Te crystals with two dif-
ferent isotopic compositions, of which one was sub-
jected to 92% 128Te isotopic enrichment. The isotopic
enrichment resulted in a threefold increase in the max-
imal values of thermal conductivity; however, Oskot-
skii et al. [14] observed no effect of isotopic disorder on
the phonon drag thermopower at low temperatures.
This negative result is possibly due either to the differ-
ent concentrations of charged impurities in the investi-
gated samples or to the relatively weak contribution of
the N processes to the overall phonon relaxation rate.

In recent measurements of the thermopower in ger-
manium crystals of different isotopic compositions, we
found an almost twofold increase in the thermopower at
low temperatures in a monoisotopic sample of 70Ge
(99.99%) compared to Ge of natural isotopic composi-
tion [15]. This result is indicative of the important part
played by the N processes in the relaxation of the
phonon system for isotopically enriched germanium
crystals. The importance of these processes in the lat-
tice thermal conductivity without the separation of the
contributions made by longitudinal and transverse
phonons is studied quite well [16–18]. In the N pro-
cesses of scattering, the phonon momentum is con-
served. These processes make no direct contribution to
the thermal resistance; they provide for the relaxation
of the phonon subsystem to the drift locally equilibrium
distribution. Therefore, the N processes redistribute the
energy and momentum between different phonon
modes to form the nonequilibrium phonon distribution
function and prevent a strong deviation of each phonon
mode from the equilibrium distribution. This is accom-
panied by a variation of the relative contribution by var-
ious resistive processes of scattering (scattering from
defects and boundaries of the sample and in the
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
phonon–phonon umklapp processes) to thermal resis-
tance. The drift motion of phonons must be taken into
account under conditions in which the phonon relax-
ation rate in the N processes, νphN(q), is higher than or
comparable to the rate of relaxation in resistive pro-
cesses of scattering, νphR(q). It is evident that, in isoto-
pically pure Ge samples at low temperatures, when the
phonon–phonon umklapp processes are largely frozen,
the rate of relaxation of longitudinal phonons in the N
processes significantly exceeds the resistive rate of
relaxation νphR(q) which is mainly due to isotopic dis-
order. In this paper, we will demonstrate that the inclu-
sion of the phonon drift caused by the N processes
enables one to qualitatively explain the significant
effect of isotopic disorder on the drag thermopower in
Ge crystals.

In describing the drag thermopower, in contrast to
the previous investigations, we will separate the contri-
butions by longitudinal and transverse phonons and
take into account the redistribution of the phonon
momentum in the N processes of scattering both within
each vibrational branch (Simons mechanism [19]) and
between different vibrational branches of phonons
(Herring mechanism [20]). In this approximation, the
nonequilibrium of the phonon system is described by
six parameters, namely, by the rates of phonon relax-
ation in the resistive and normal processes of scattering
and by the average drift velocities for each branch of
the phonon spectrum. This description of phonon non-
equilibrium enables one to reveal new features of relax-
ation of the momentum of quasi-particles and their
effect on the thermopower and thermal conductivity of
semiconductors. We will demonstrate below that the
drift velocity of phonons (as well as the thermal con-
ductivity) is largely defined by thermal phonons for
which the scattering from defects plays a significant
part. Therefore, when the drift of the phonon system is
taken into account, the thermopower becomes sensitive
to the degree of isotopic disorder. We further give the
results of measurements and quantitative analysis of the
isotope effect in the drag thermopower.

2. EXPERIMENTAL RESULTS

In this paper, we analyze the experimental data on
the thermopower α(T) of single crystals of germanium
with three different isotopic compositions, namely, the
natural composition and compositions subjected to
70Ge isotopic enrichment of 96.3% and up to 99.99%.
Ge crystals of the n and p types with the concentration
of charged impurities of |Nd – Na| < 2 × 1013 cm–3 were
used. Note that Geballe and Hull [21] found that, in the
case of highly pure samples of Ge of the n and p types,
the phonon drag thermopower very weakly depends on
the concentration of electrically active impurities at a
doping level below 1015 cm–3 and decreases in magni-
tude at higher concentrations. Our samples were shaped
as parallelepipeds of square cross section. The samples
SICS      Vol. 96      No. 6      2003
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had a total length of approximately 40 mm, with the
square side in cross section of approximately 2.5 mm.
The thermopower was measured using the method of
steady longitudinal heat flux in vacuum in the tempera-
ture range from 8 to 300 K. The heat flux was directed
along the longer axis of the sample; the temperature dif-
ference along the sample did not exceed 1% of its aver-
age temperature. The parameters of five investigated
samples are given in the table.

The experimental data on the temperature depen-
dence of the thermopower are given in Fig. 1. One can
see in the figure that, at temperatures above 70 K, the
thermopower is almost independent of temperature.
The diffusion component of thermopower αe(T) pre-
dominates in this temperature range; this component is
defined by the degree of doping and by the band param-
eters of the semiconductor and is independent of the
phonon lifetime. At low temperatures, where the
phonon drag thermopower αph(T) predominates, α(T)
increases with decreasing isotopic disorder; in so
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Fig. 1. The magnitude of differential thermopower as a
function of temperature for samples of germanium crystals
with different isotopic compositions: (1) sample no. G2,
(2) G7, (3) G70, (4) Gn21, (5) S1.
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doing, the thermopower at the maximum for isotopi-
cally pure 70Ge (99.99%) is approximately twice as
high as that for germanium with the natural isotopic
composition (natGe). Compared to the thermal conduc-
tivity, the thermopower of germanium turned out to be
approximately five times less sensitive to the variation
of the degree of isotopic disorder. Note that, in the case
of samples with the same isotopic composition, the
thermopower is independent of the degree of doping
within the experimental error. This is in good agree-
ment with the well-known fact of the weak sensitivity
of the magnitude of the drag thermopower to the dopant
concentration in fairly pure germanium crystals [6, 21].
These special features of thermopower call for detailed
theoretical treatment.

Given below are the results of quantitative analysis
of the isotope effect in the thermopower of germanium.
Attention is focused on the investigation of the effect of
the drift motion of the phonon system, due to the nor-
mal processes of phonon scattering, and of the inelas-
ticity of electron–phonon scattering on the drag ther-
mopower. The effect of the normal processes of phonon
scattering on the mutual drag of electrons and phonons
in metals and in degenerate semiconductors is treated
in [10, 11]. In our paper, this theory is generalized to
the case of semiconductors with nondegenerate statis-
tics of current carriers. We have treated the redistribu-
tion of the momentum of longitudinal and transverse
phonons in the N processes of scattering both within
each vibrational branch and between different vibra-
tional branches. Previously, this approach made it pos-
sible to successfully explain the effect of the isotopic
composition on the thermal conductivity of germanium
and silicon crystals [22, 23]. Here, this method is used
to investigate the effect of isotopic disorder on the drag
thermopower. In calculating the emf, we used the times
of phonon relaxation determined from the data on the
thermal conductivity for the same samples of germa-
nium [3, 22]. It is demonstrated that, in fairly pure
semiconductors, both the thermopower and the lattice
thermal conductivity [22] (with the separation of the
contributions by longitudinal and transverse phonons)
Parameters of investigated samples of Ge crystals

Sample no. Isotopic composition, 
% 70Ge g, 10–5 Axis |Nd – Na|, 1012 cm–3

G2 99.99 0.008 [100] 2.7

G7 99.99 0.008 [111] 20

G70 96.6 7.75 [100] 2

Gn21 natural 58.9 [100] 0.5

S1 natural 58.9 [111] 4

Note: g =  is the factor characterizing the isotopic disorder of the crystal [3].f i
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largely depend on the mechanism of relaxation of the
phonon momentum in the N processes of scattering.

3. THE EFFECT OF THE N PROCESSES
OF PHONON–PHONON SCATTERING

ON THE RELAXATION OF MOMENTUM
OF ELECTRONS AND PHONONS 

IN A NONEQUILIBRIUM ELECTRON–PHONON 
SYSTEM

For simplicity, we will treat a semiconductor with
the isotropic law of dispersion of current carriers. We
will calculate a charge flow caused by the effect of
electric field E = {Ex, 0, 0} and the temperature gradient
∇ T = (∇ xT, 0, 0). The set of kinetic equations for the
nonequilibrium electron f(k, r) and phonon Nλ(q, r)
distribution functions in view of the N processes of
scattering has the form [11]

(1)

Here,  = sλq/q is the group velocity of acoustic

phonons with polarization λ;  is the Planck func-

tion;  is the phonon relaxation rate in the N pro-
cesses of scattering; and the rate

includes all of the nonelectron resistive rates of phonon
relaxation, due to the phonon scattering from phonons

in the umklapp processes, , from defects and

isotopic disorder, , and from the boundaries of

the sample, . The collision integrals of electrons
with impurities, Iei , and with phonons, Ie ph , and of
phonons with electrons, Iph e , were determined in [7–9,
24–27]. In Eq. (1), it is taken into account that the
N processes of scattering bring the phonon subsystem
to the locally equilibrium Planck distribution with the
drift velocity uλ which may be different for phonons of
different polarizations [16–18],

(2)

We will represent the electron and phonon distribu-
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tion functions in the form [3–5]

(3)

where 

 

f

 

0

 

(

 

ε

 

k

 

) is the equilibrium electron distribution
function, and 

 

δ

 

f

 

k

 

 and 

 

g

 

λ

 

(

 

q

 

) are nonequilibrium addi-
tions to the distribution functions, which are linear as
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k, ) in the approximation of elastic
scattering, in terms of relaxation rates [27]. In calculat-
ing the collision integral Iph e(f0, gλ(q)), we will not
restrict ourselves to the linear approximation with
respect to the inelasticity parameter [7–9, 24–28] and
will take into account the inelasticity of collisions
between nonequilibrium phonons and equilibrium elec-
trons.

We will substitute expressions (2) and (3) into (1) to
derive, similar to [11], the expression for the phonon
distribution function gλ(q),

(4)

Here,

is the total rate of relaxation of phonons with the wave

vector q and polarization λ, and  is the rate of
relaxation of momentum of phonons from electrons
[24–27]. The first term in expression (4) is defined by
the diffusion motion of phonons, and the second term
takes into account the drift phonon motion and is asso-
ciated with the normal processes of phonon–phonon
scattering. The phonon drift velocity uλ is found from
the balance equation for phonon momentum, which fol-
lows from the law of conservation of momentum in the
normal processes of phonon–phonon scattering,

(5)
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A scheme illustrating the redistribution and relaxation
of the momentum received by a phonon system from
the temperature gradient is given in Fig. 2. The phonon
scattering in the resistive processes of scattering (R)
(from isotopic disorder, electrons, and sample bound-
aries, and the phonon–phonon scattering in the
umklapp processes) brings about the relaxation of the
momentum of the phonon system. The N processes
redistribute the momentum between different phonon
modes (L-ph and t-ph) and bring about the phonon drift
with an average velocity uλ . As in [10, 11, 16–18], we
assume that the drift velocity is independent of the
wave vector of phonons. Two mechanisms of normal
three-phonon processes of scattering are usually exam-
ined, namely, the Herring [20] and Simons [19] mech-
anisms. In the Herring mechanism of N processes,
phonons of different polarizations are involved: the rate
of relaxation of transverse phonons in the Herring
mechanism is defined by the scattering processes (t +
L  L) in which one transverse and two longitudinal
phonons are involved; in this case, the main contribu-
tion to the rate of relaxation of longitudinal phonons is
made either by the processes of decay of a longitudinal
phonon into two transverse phonons belonging to dif-
ferent branches or by the fusion of two transverse
phonons to form a longitudinal phonon (L  t1 + t2).
This relaxation mechanism provides for redistribution
of the drift momentum between longitudinal and trans-
verse phonons (see Fig. 2) and tends to establish a
locally equilibrium distribution with a drift velocity
that is the same for phonons of both polarizations, uL =

     

                         

∆T

L-ph

uH

t-ph

R

R

uL = ut = uH
 νphR

(L)

 νphR
(t)

 νphN
(t)

 νphN
(L)

∆T

L-ph

uL

t-ph

R

R

uL ≠ ut 

 νphR
(L)

 νphR
(t)

 νphN
(t)

 νphN
(L)

ut

Fig. 2. A scheme illustrating the relaxation of momentum in
a phonon system for two mechanisms of phonon scattering
in the normal processes: (a) for the Herring mechanism,
(b) for the Simons mechanism.

(a)

(b)
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ut = uH . The Simons mechanism of relaxation [19]
involves phonons of one polarization. In the case of this
mechanism of scattering, the law of conservation of
momentum in the N processes is valid for each branch
of the phonon spectrum, and the drift velocity of longi-
tudinal phonons differs from that of transverse
phonons. Therefore, we will treat below two options for
the relaxation of the phonon momentum in the N pro-
cesses.

We use expressions (4) and the balance equation for
phonon momentum (5) to find the phonon drift velocity
uλ for the Herring (H) and Simons (S) mechanisms of
relaxation, as was done in [11]. After this, we derive,
for the phonon distribution function gλ(
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phonon relaxation rate; this decrease is different for the
Herring [20] and Simons [19] relaxation mechanisms.
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We will now consider the electron subsystem. The
electron scattering from impurities, νei , results in the
relaxation of electron momentum, and the mechanisms
of electron–phonon relaxation characterized by the
rates νe  ph and νph e bring about the redistribution of
momentum within an electron–phonon system; in so
doing, the electrons interact only with long-wavelength
phonons. We do not treat the renormalization of the
thermopower due to the mutual drag of electrons and
phonons. Note that the quantities such as the ther-
mopower and thermal conductivity are found from the
condition that the total current through the sample is
zero. In this case, the average velocity of ordered elec-
tron motion in any physically small sample volume is
zero. Therefore, the transfer of momentum of ordered
electron motion to the phonon subsystem is low, and the
effect of electron nonequilibrium on the electrons via
the phonon subsystem may be ignored [11]. On the
other hand, a steady phonon flow from the hot end of
the sample to the cold end exists in the presence of a
temperature gradient, and the magnitude of ther-
mopower is largely defined by the transfer of momen-
tum of ordered phonon motion to electrons. Note that,
for longitudinal phonons in Ge crystals at low temper-
atures, when the electron–phonon drag makes a marked
contribution to the thermopower, the relaxation rate
νphN(q) @ νphR(q) [22]. It follows from the foregoing
that the relaxation of phonon momentum in a nonequi-
librium electron–phonon system must be taken into
account more rigorously than was done in the case of
one-parameter approximation [7–9, 24–28].

The purpose of this theoretical analysis is to investi-
gate the effect of the phonon drift caused by the N pro-
cesses on the drag thermopower. In this case, one can
ignore the mutual drag of electrons and phonons and
obtain, as was done in [27], the following solution for
the function c(ε):

(9)

(10)

Here, τ(ε) is the total relaxation time of electrons;

the rates of electron relaxation from neutral, νe0(k), and
charged, νei(k), impurities have the known form (see,
for example, [7], formulas (10.29) and (10.50)); and the
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electron–phonon collision rate is defined by the expres-
sion

(11)

where

E0λ is the deformation potential constant, and ρ is the
density. For semiconductors with nondegenerate statis-
tics of current carriers,

the F± functions may be represented in the form

then, in view of the inelasticity of electron–phonon
scattering, we find
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The upper limits of integration in Eqs. (12) are defined
by the expressions

(13)

where δλ is the inelasticity parameter. In the case of
semiconductors, the effective temperature Tsλ defining
the inelasticity of electron–phonon scattering is, as a
rule, less than 1 K; for example, in the case of Ge, TsL ≈
0.8 K at sL ≈ 5.21 × 105 cm/s, me ≈ 0.22m0. Therefore,
even at T > 10 K, δλ ! 1 and zmax ! 1; therefore, expres-
sions (12) may be expanded in powers of z. In a zero
approximation with respect to the inelasticity parame-
ter δλ , we will derive from Eqs. (12) the known expres-
sion for the electron–phonon relaxation time,

(14)

In the same approximation, the expression for the inverse
time of phonon–electron relaxation has the form

(15)

The concentrations of electrons, ne, and of charged
donors, Nd+, and the reduced Fermi level η = ζ/kBT are
found from the condition of electroneutrality for ger-
manium (see [7], formula (6.9)): Nd ≈ 1012–1013 cm–3,
εd ≈ 0.01 eV, and me ≈ 0.22m0. For these values of the
parameters, the criterion of nondegenerate statistics is
well valid.

In the approximation we adopted, the c(ε) function
allows for the direct effect of the electric field and tem-
perature gradient on the electron subsystem, as well as
for the effect of the phonon drag of electrons.

4. THE DRAG THERMOPOWER
IN SEMICONDUCTORS

WITH NONDEGENERATE STATISTICS
OF CURRENT CARRIERS

We will examine the effect of the normal processes
of phonon–phonon scattering on the thermal electro-
motive force of semiconductors with nondegenerate
statistics of current carriers. We will calculate the con-
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duction current j by dividing it into three parts propor-
tional to nonequilibrium additions to the electron distri-
bution function c(ε),

(16)

From the condition j = 0, we find

(17)

We will not consider below the diffusion component of
thermopower: for germanium crystals at T < 100 K, this
contribution is small. In the case of nondegenerate sta-
tistics, the expression for the phonon drag thermopower
may be represented in the form

(18)

(19)

(20)

The upper integration limits in Eqs. (20) are defined
by expressions (13). First of all, note that the drag ther-
mopower includes, as does the lattice thermal conduc-
tivity [11, 22], the phonon momentum relaxation rate
renormalized by the N processes. Unlike standard
one-parameter approximations for the drag ther-
mopower [7–9, 24–28], expressions (18)–(20) include
the inelasticity of electron–phonon scattering, as well
as the contribution made by the phonon drift motion.
This contribution has different forms for the Herring
and Simons mechanisms of relaxation. Because the
phonon drift velocity is defined by all thermally excited
phonons, the thermopower becomes sensitive to the
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degree of isotopic disorder. It follows from formulas (6),
(19), and (20) that the inclusion of the drift of the
phonon subsystem, which is associated with the normal
processes of phonon scattering, brings about a decrease
in the effective relaxation rate of phonons and, accord-
ingly, an increase in the fraction of momentum trans-
ferred to electrons by phonons. This result is of practi-
cal importance as regards the interpretation of experi-
mental data on the thermopower of germanium crystals
with isotopic disorder.

In the extreme case of νphN(q) ! νphR(q), one can
ignore the contribution of the phonon drift motion and
use the expression for the drag thermopower that was
previously derived with a one-parameter approximation
[7–9, 24–28]. With νphN(q) @ νphR(q), the normal pro-
cesses of phonon–phonon scattering and the drift of the
phonon system associated with this scattering lead to a
significant increase in the absolute values of ther-
mopower. Note that, in interpreting the experimental
data on the drag thermopower in previous studies
involving the use of a one-parameter approximation
(see [7–9, 24–28]), the relaxation rate in the normal
processes νphN(q) was included in the total phonon

relaxation rate  as the resistive mechanism of
phonon scattering, and, at νphN(q) @ νphR(q), it was
treated as the only mechanism of relaxation of momen-
tum of long-wavelength phonons [7, 8]. However, it
follows from expressions (18)–(20) that, in this extreme
case, the relaxation rate νphN(q) is eliminated from the
drag thermopower, and αph is fully defined by the aver-
aged relaxation rate of phonons in the resistive pro-
cesses of scattering,

(21)

A one-parameter approximation yields in this case an
entirely different result,

(22)
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Therefore, the inferences previously made with respect to
the temperature and field dependences of the drag ther-
mopower [7–9, 24–28] need to be refined. It is evident
that, in the case of one-parameter approximation (22), the
drag thermopower αph is insensitive to the degree of
isotopic disorder. Note that a different approach to the
calculation of the drag thermopower was suggested
in [12, 13]. This approach is based on dividing the
entire system into two subsystems, namely, the sub-
system of long-wavelength phonons (q < 2k) with
which electrons interact and the subsystem of thermal
phonons (q > qTλ). The authors of [12, 13] suggested a
mechanism of two-stage drag: the phonon drift motion
is defined by the thermal phonons, which, in turn, drag
the long-wavelength phonons. By their physical con-
tent, our method and the approach developed in [12, 13]
coincide, because, in our theory, it is the thermal
phonons that define the phonon drift motion, as well as
the thermal conductivity. However, our method is more
general: we treat correctly the N processes of scattering
of thermal phonons with regard for their drift and diffu-
sion motion, identify the contributions by phonons of
different polarizations, and treat both the intrabranch
and interbranch redistribution of the phonon momen-
tum in the N processes of scattering.

5. THE RESULTS OF CALCULATION 
OF THE DRAG THERMOPOWER

OF GERMANIUM CRYSTALS 
OF DIFFERENT ISOTOPIC COMPOSITIONS

Given below are the results of numerical analysis of
the drag thermopower in germanium crystals of differ-
ent isotopic compositions, which, in view of the
assumptions made, may only pretend to be a qualitative
explanation of the effect. The main results include the
isotropic band approximation and the assumption that
the phonon drift velocity is independent of the wave
vector, i.e., the drift velocities of thermal and long-
wavelength phonons are the same. The calculation of
the drag thermopower with a real band structure of ger-
manium within the suggested method of inclusion of
the normal processes of phonon scattering, with the
long-wavelength and thermal phonons treated sepa-
rately, is of interest per se. In this analysis, we restrict
ourselves to examining the effect of the phonon drift
motion and of the inelasticity of electron–phonon scat-
tering on the drag thermopower in germanium crystals.
The values of the parameters defining the phonon relax-
ation rate were borrowed from the results of analysis of
the data on the thermal conductivity of Ge crystals of
different isotopic compositions, obtained in [3, 22]. The
use of these parameters made it possible to fit the
results of calculations of thermal conductivity for the
Herring mechanism of relaxation [22] to the experi-
mental data of [3] in a wide temperature range in the
entire investigated range of isotopic enrichment. In our
calculation of the drag thermopower, these parameters
are not varied. The fitting parameter of the theory is the
SICS      Vol. 96      No. 6      2003
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deformation potential constant. Given a fixed effective
mass of electrons, this constant is selected on the basis
of the condition of agreement between the calculated
value of absolute thermopower at the point of maxi-
mum and the experimentally obtained values for ger-
manium of natural isotopic composition and is then
used to calculate the thermopower of 70Ge (99.99%).
Because the effective mass of one of four ellipsoids in
the crystallographic direction [111] is me ≈ 1.68m0, its
average magnitude was varied from the value of the
effective mass of the density of states me ≈ 0.22m0 to the
value of me ≈ m0.

We will first examine the part played by the inelas-
ticity during the transfer of momentum from nonequi-
librium phonons to equilibrium electrons. Figures 3a
and 3b give the results of calculations of the drag ther-
mopower for natGe and 70Ge (99.99%) at me ≈ 0.22m0
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Fig. 3. The temperature dependence of the drag ther-
mopower for the following values of parameters: (a) me ≈
0.22m0, E0L = 16 eV; (b) me = m0, E0L = 4 eV. Curves 1
and 1a are for germanium of natural isotopic composition
(Nd = 4 × 1012 cm–3), and curves 2 and 2a are for germa-

nium with 99.99% 70Ge (Nd = 2 × 1013 cm–3). Curves 1
and 2 allow for the inelasticity of electron–phonon scatter-
ing, and curves 1a and 2a are plotted in a linear approxima-
tion with respect to the parameter of inelasticity of electron–
phonon scattering.
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and me ≈ m0. One can see in the figures that the exact
inclusion of the inelasticity of electron–phonon scatter-
ing brings about a marked suppression of the contribu-
tion of phonon drag in the thermopower. The maximal
values of thermopower |αmax| decrease by a factor of
1.6–1.7 for the value of me ≈ 0.22m0. However, the
importance of inelasticity increases with the effective
mass of electrons: at me ≈ m0, the value of |αmax|
decreases by a factor of 3 for natGe and by a factor of 2.2
for 70Ge (99.99%). This result came as a surprise to us.
The thing is that analysis of the time of relaxation of
electrons from phonons [7–9] revealed that, for temper-
atures T @ Tsλ (TsL ≈ 0.8 K for Ge at me ≈ 0.22m0), the
importance of inelasticity is minor and, at temperatures
above 5 K, it may be ignored. Therefore, in the previ-
ously published papers dealing with the drag ther-
mopower in semiconductors [6–9, 24–30], the inelas-
ticity of electron–phonon scattering was taken into
account in a linear approximation with respect to the
inelasticity parameter "ωqλ/kBT.

Note that the inclusion of scattering from charged
and neutral donor impurities at concentrations of the
order of 1012–1013 cm–3 has little effect on the magni-
tude of the thermopower (this scattering introduces a
contribution of less than 3%), while the magnitude of
the electron mobility varies more significantly in the
low-temperature region.

Figure 4 gives the contributions of the phonon drift
and diffusion motions into the drag thermopower for
natGe and 70Ge (99.99%). One can see in the figure that,
in the case of natGe, the predominant contribution to the
thermopower is made by the phonon diffusion motion.
The contribution by the drift motion is small and
amounts to 21% of the diffusion contribution at the
maximum of |α|. In contrast, in the case of 70Ge
(99.99%), the drift contribution to the drag ther-
mopower predominates. It is six times the diffusion
contribution. In view of the foregoing, indeed, the isotope
effect in the thermopower for Ge is associated with the
drift motion of thermal phonons. As was already
observed in analyzing the thermal conductivity of Ge and
Si crystals of different isotopic compositions [22, 23], a
decrease in the degree of isotopic disorder brings about
an abrupt increase in the contribution made by the drift
motion of longitudinal phonons to the thermal conduc-
tivity. The same effect shows up in the drag ther-
mopower.

Figure 5 gives the theoretically and experimentally
obtained temperature dependence of the drag ther-
mopower for natGe and 70Ge (99.99%). One can see in
the figure that the theory provides a qualitative explana-
tion of the isotope effect in the thermopower: the max-
imal values of |αmax| in the case of transition from natGe
to 70Ge (99.99%) increase by a factor of 1.3 for the
value of me ≈ 0.22m0 and by a factor of 2.25 for me ≈ m0,
which actually agrees with the experimentally observed
increase in the direction [111]. This may point to the
 AND THEORETICAL PHYSICS      Vol. 96      No. 6      2003
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predominant part played by one of four ellipsoids with
the maximal effective mass along the direction [111].
However, the position of maxima for natGe (see Figs. 3,
4, and 5) turns out to be shifted to the low-temperature
region, Tmax ≈ 6 K, while experiment gives Tmax ≈ 17 K.
For 70Ge (99.99%), calculation gives Tmax ≈ 10 K, while
experiment produces Tmax ≈ 15 K. In calculating the
thermopower in the direction [100] (see Fig. 5, curve
3), the deformation potential constant was not varied,
and the velocities of sound were taken to be sL = 4.92 ×
105 cm/s and st = 3.55 × 105 cm/s, in accordance with
[31]. In this case, the isotope effect in the thermopower
with the same constant of deformation potential turned
out to be 35% lower, which may be indicative of some
anisotropy of the drag thermopower.

Note that the contribution by longitudinal phonons
alone was taken into account in the calculation of the
drag thermopower. Analysis revealed that, within the
assumptions made, the isotope effect for transverse
phonons was low and, upon transition from natGe to
highly enriched germanium, this contribution increased
by approximately 10%. This is associated with the pre-
dominant part played by the diffusion motion of trans-
verse phonons (for more detail, see [22]). Therefore, in
this analysis, we ignored the contribution of transverse
phonons, although the position of the maximum of

 is found at approximately 20–22 K. The inclusion
of this contribution could have markedly improved the
agreement between the calculated curves and the exper-
imental data at temperatures above the maximum.
However, the introduction of an additional fitting
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Fig. 4. The temperature dependence of (1, 2) the drag ther-
mopower, as well as of the contributions by (1a, 2a) the dif-
fusion and (1b, 2b) drift of phonons for germanium of dif-
ferent isotopic compositions (me = m0, E0L = 4 eV) allow-
ing for the inelasticity of electron–phonon scattering.
Curves 1, 1a, and 1b are for germanium of natural isotopic
composition (Nd = 4 × 1012 cm–3), and curves 2, 2a, and 2b

are for germanium with 99.99% 70Ge (Nd = 2 × 1013 cm–3).
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parameter into the theory hardly added anything to the
physical content of this paper.

6. CONCLUSIONS

In this paper, we have interpreted the experimentally
found strong dependence of the thermopower of germa-
nium crystals on the isotopic composition. We have
developed a theory of phonon drag of electrons in semi-
conductors with nondegenerate statistics of current car-
riers, which takes into account the effect of the phonon
drift motion associated with the normal processes of
phonon scattering. A qualitative explanation has been
given of the isotope effect in the drag thermopower. It
has been demonstrated that the rigorous inclusion of
inelastic electron scattering brings about a significant
(by factor of more than two) reduction of the absolute
values of the drag thermopower. In our opinion, the iso-
tropic band approximation for conduction electrons, as
well as the assumption of the equality of the drift veloc-
ities of long-wavelength and thermal phonons, failed to
provide for quantitative agreement with the experimen-
tal data on the drag thermopower, in contrast to calcu-
lations of thermal conductivity [22].

The inclusion of both of the above-identified factors
requires significant mathematical effort, namely, a sep-
arate study of the relaxation of thermal and long-wave-
length phonons and analysis of the Simons mechanism
of normal processes of scattering, which leads to the
redistribution of momentum between the thermal and
long-wavelength phonons of different vibrational
branches.
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Fig. 5. The temperature dependence of the drag ther-
mopower (E0L = 4 eV). Curve 1 is for germanium of natural

isotopic composition (me = m0, Nd = 4 × 1012 cm–3), curve 2

is for germanium with 99.99% 70Ge (me = m0, Nd = 2 ×
1013 cm–3) in the direction [111], and curve 3 is for germa-
nium with 99.99% 70Ge (me ≈ 0.9m0, Nd = 2 × 1012 cm–3)
in the direction [100]; the symbols indicate the experimen-
tal data.
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