Correlated diffusion of silicon and boron in thermally grown SiO₂

Masashi Uematsu,^{a)} Hiroyuki Kageshima, and Yasuo Takahashi^{b)} NTT Basic Research Laboratories, NTT Corporation, Atsugi 243-0198, Japan

Shigeto Fukatsu and Kohei M. Itoh

Department of Applied Physics and Physico-Informatics and CREST-JST, Keio University, Yokohama 223-8522, Japan

Kenji Shiraishi

Institute of Physics, University of Tsukuba, Tsukuba 305-8571, Japan

(Received 18 February 2004; accepted 17 May 2004)

Si self-diffusion and B diffusion in SiO₂ were simultaneously investigated in thermally grown $^{28}SiO_2$ co-implanted with ^{30}Si and B. The B diffusivity increases with decreasing distance between the implanted B and Si/SiO₂ interface, in the same way as Si self-diffusivity. This result together with a numerical simulation shows that SiO molecules, which are generated at the Si/SiO₂ interface and diffusing into SiO₂, enhance not only Si self-diffusion, but also B diffusion. In addition, we found that the diffusivities of both Si and B increase with higher B concentration in SiO₂. The experimental results can be quantitatively explained by a numerical simulation assuming that the diffusivity of SiO, which enhances the diffusivities of Si and B, increases with higher B concentration. © 2004 American Institute of Physics. [DOI: 10.1063/1.1771811]

As the thickness of the SiO₂ layers for metal-oxidesemiconductor (MOS) devices decreases, atomic and molecular diffusion in SiO₂ becomes a fundamental issue. Concerning impurity diffusion, boron (B) penetration through the thin SiO₂ layer is still a serious problem in high- κ gate dielectrics because of the formation of an interfacial SiO₂ layer.¹ For Si self-diffusion, we have recently found, based on experimental and simulation results, that SiO molecules generated at the Si/SiO₂ interface and diffusing into SiO₂ enhance Si self-diffusion in SiO₂.^{2,3} This suggests that the effect of the Si/SiO₂ interface must be taken into account in thermal processing involving ultrathin SiO₂ layers. In addition, diffusion of SiO is closely related to the viscosity of SiO₂, which is an important property of materials.⁴ The present work investigates the correlation between Si selfdiffusion and B diffusion in SiO₂, and their interaction with SiO arriving from the Si/SiO₂ interface.

An isotopically enriched ²⁸Si single-crystal epilayer was thermally oxidized in dry O2 at 1100 °C to form ²⁸SiO2 of thicknesses of 200, 300, and 650 nm. The samples were implanted with ³⁰Si at 50 keV to a dose of 2×10^{15} cm⁻² and capped with a 30-nm-thick silicon nitride layer by rf magnetron sputtering. These procedures lead to the sample structure in Fig. 1(b) of Ref. 2. Subsequently, the samples were implanted with ¹¹B at 25 keV to a dose of 5×10^{13} or 3 $\times 10^{15}$ cm⁻², which will be referred to as low-dose and highdose samples, respectively. The implantation energy was chosen so that the peak position of implanted B would be close to that of ³⁰Si. The as-implanted profiles of ³⁰Si and B are shown in Fig. 1. Samples were pre-annealed at 1000 °C for 30 min to eliminate implantation damage and diffusionannealed at temperatures between 1100 and 1250 °C in a resistively heated annealing furnace. The depth profiles of ³⁰Si and B were measured by secondary ion mass spectrometry (SIMS) using O_2^+ as a primary ion beam with acceleration energy of 5 keV.

Figure 1 shows the depth profiles of 30 Si and B in the high-dose 200-nm-thick sample after diffusion anneal of 6 h at 1250 °C. The as-implanted profiles before pre-annealing are shown as initial profiles in Fig. 1 because the profiles after the pre-annealing showed no observable diffusion within the accuracy of our SIMS measurements. The 30 Si depth profile of the annealed sample without B implantation is also shown. The profile of 30 Si in the high-dose samples shows larger diffusion than that without B. On the other hand, the 30 Si profile of the low-dose samples (not shown in

FIG. 1. Diffusion profiles of ³⁰Si and B in the 200-nm-thick sample implanted with B to a dose of 3×10^{15} cm⁻² after diffusion anneal of 6 h at 1250 °C. The as-implanted profiles are shown as initial profiles. The ³⁰Si diffusion profile without B implantation is also shown. In the data, the increase of ³⁰Si concentration close to the surface (0 ~ 20 nm) is an artifact from silicon-nitride caps, and that deep in the bulk (>160 nm) is ³⁰Si that diffused from Si substrates with the natural isotopic abundance (800 nm below the ²⁸Si epilayer) during the thermal oxidation to prepare the sample.

221

Downloaded 18 Nov 2004 to 131.113.64.28. Redistribution subject to AIP license or copyright, see http://apl.aip.org/apl/copyright.jsp

a)Electronic mail: uematsu@aecl.ntt.co.jp

^{b)}Present address: Hokkaido University, Sapporo 060–0814, Japan.

^{© 2004} American Institute of Physics

FIG. 2. Diffusion profiles of B in SiO₂ with various thicknesses. Samples were implanted with B to a dose of 5×10^{13} cm⁻² and annealed at 1200 °C for 24 h.

Fig. 1) showed no significant difference from that without B. In addition, for the high-dose sample, a significant decrease in the ³⁰Si concentration at its peak region was observed, where B concentration is high. In contrast, the tail region of ³⁰Si showed less significant diffusion, where B concentration is low. The same tendency was consistently observed for ²⁸SiO₂ samples with other thicknesses and for different annealing conditions; for example, after 24 h at 1200 °C.

Before we present a consistent numerical simulation of these experimental results to support our correlated diffusion model, we address the possible concern that the implantation damage and strain in SiO₂ may play a role in the diffusion of Si and B. We believe that the implantation damage is of no concern because the self-diffusivity of implanted Si in thick SiO₂ agrees with that obtained from damage-free chemical vapor deposition SiO₂,⁵ and remains unchanged for the doses between 1×10^{14} and 2×10^{15} cm⁻², as described in Ref. 2. In addition, we performed pre-annealing prior to the diffusion anneals. The strain in thin samples is also of no concern because the Si self-diffusion, which increases with time due to increasing amounts of SiO arriving from the Si/SiO₂ interface,³ would decrease with time if the diffusion were affected by the strain (or by damage), which should be gradually relieved (reduced) by the anneals.

Figure 2 shows the B profiles in low-dose samples after annealing at 1200 °C for 24 h. As we revealed for Si self-diffusion,^{2,3} the B profile demonstrates a clear dependence on the thickness of the ²⁸SiO₂ layer; the shorter the distance from the Si/SiO₂ interface, the higher the B diffusivity in SiO₂. This tendency was observed consistently for the high-dose samples and other temperatures employed in this study. This dependence of B diffusivity on the distance indicates that Si self-diffusion and B diffusion as well are enhanced by SiO molecules, which are generated at the Si/SiO₂ interface and diffusing into SiO₂. The experimental signature of the B diffusivity enhancement with decreasing SiO₂ thickness is also found in Refs. 6 and 7, where highly B doped poly-Si in MOS structures was used as the source of diffusing B.

The results in Fig. 2 indicate that B in SiO₂ diffuses via two independent mechanisms: one does not involve SiO (hereafter referred to as thermal B diffusion) and the other Downloaded 18 Nov 2004 to 131.113.64.28. Redistribution subject to AIP license or copyright, see http://apl.aip.org/apl/copyright.jsp

FIG. 3. Experimental and simulated B profiles in the 300-nm-thick sample with high- and low-B doses after annealing of 24 h at 1200 $^{\circ}$ C. The calculation result without B concentration dependence for the high-dose case is also shown (thick dotted line).

involves SiO. Evidence for the existence of two mechanisms is that very few SiO molecules arrive from the interface in the 650-nm-thick sample. B diffusion via SiO can be described as $B(s)+SiO(i) \Leftrightarrow Si(s)+B(i)$, assuming that it is similar to B diffusion in Si via the kick-out mechanism. Here, B atoms substituted in the Si sites of SiO₂ [denoted as (s)] diffuse via the kick-out reaction with diffusing SiO molecules in interstitial sites [denoted as (i)], and B(i) may correspond to BO according to the first-principles calculation of B diffusion in SiO₂.⁸ By replacing ³⁰Si with B in Eq. (1) of Ref. 3, B diffusion in SiO₂ can be simulated in a manner similar to our recent simulation of Si self-diffusion in SiO₂. Likewise, $D_{\text{Si(th)}}^{\text{SD}}$ (thermal Si self-diffusivity) should be replaced with $D_{B(th)}^{eff}$ (the effective diffusivity of thermal B diffusion), and D_{SiO}^{SD} (Si self-diffusivity via SiO) with D_i^{eff} (the effective diffusivity of B diffusion via the kick-out mechanism with SiO), which corresponds to D_i^{eff} for B diffusion in Si.^{9,10} The total effective B diffusivity is expressed by $D_{\rm B}^{\rm eff}$ = $D_{\rm B(th)}^{\rm eff} + D_{\rm i}^{\rm eff} C_{\rm SiO} / C_{\rm SiO}^{0}$, where $C_{\rm SiO}^{0}$ denotes the maximum concentration of SiO interstitials in SiO2.3 The experimentally obtained B diffusivity in thick (>1 μ m) SiO₂, $D_{B(th)}^{eff}$ $=3.12 \times 10^{-3} \exp(-3.93 \text{ eV/kT}) \text{ cm}^2/\text{s}$,¹¹ which corresponds to the effective thermal B diffusivity, is used in our simulation. Consequently, the only parameter needed to fit the experimental B profiles in Fig. 2 is D_i^{eff} , and we consistently obtained D_i^{eff} =6.4×10⁻² exp(-4.1 eV/kT) cm²/s for all samples. For the simulation, diffusion equations derived for B diffusion were solved numerically by the partial differential equation solver ZOMBIE.¹²

Figure 3 compares the experimental and simulated B profiles in the 300-nm-thick sample with high and low-B doses after annealing at 1200 °C for 24 h. With the D_i^{eff} given earlier, the B diffusion profiles of low-dose samples were well reproduced by the simulation. However, the same simulation of the B diffusion for high-dose samples underestimated the results, as shown by the thick dotted line in Fig. 3. Strong enhancement of the boron diffusion in SiO₂ for the boron concentration above 10^{20} cm⁻³ has been reported previously,¹³ and we should take into account such an effect in our simulation. In order to reproduce the experimentally

FIG. 4. Simulated ³⁰Si profiles with high-dose B implantation and without B after annealing at 1250 °C for 6 h. The SIMS profiles are those of ³⁰Si in Fig. 1. The calculation result without B concentration dependence is also shown for the high-dose case (thick dotted line with open circles).

obtained enhancement of the B diffusion in the high-dose sample, we introduced a B concentration dependence of $D_{\rm B(th)}^{\rm eff}$ for thermal B diffusion and of $D_{\rm i}^{\rm eff}$ and $D_{\rm SiO}^{\rm SD}$ for B diffusion via SiO by multiplying a factor of $\exp(C_{\rm B}/C_{\rm B}^{\rm cri})$ to imitate the strong dependence on B concentration, where $C_{\rm B}^{\rm cri}$ denotes the critical B concentration above which the highconcentration effect occurs. Consequently, the factor $\exp(C_{\rm B}/C_{\rm B}^{\rm cri})$ is applied to $D_{\rm B}^{\rm eff}$, which represents the sum of the two contributions to B diffusion (thermal diffusion and diffusion via SiO). Using $C_{\rm B}^{\rm cri}=2\times10^{20}$ cm⁻³, high-B-dose B profiles were fitted by the same set of diffusion parameters as that for low-dose profiles, as shown in Fig. 3.

Finally, we show the simulation result for the increase of Si self-diffusivity with higher B concentration. In order to model the ³⁰Si diffusion with the B concentration dependence taken into account by multiplying D_{SiO}^{SD} by a factor of $\exp(C_{\rm B}/C_{\rm B}^{\rm cri})$, the diffusion mechanism of Si self-diffusion developed in our previous paper³ and that of B diffusion discussed earlier are combined to explain the simultaneous enhancement of the 30Si and B diffusion by 28SiO(i) arriving from the Si/SiO₂ interface. Figure 4 shows the simulated ³⁰Si profiles after annealing at 1250 °C for 6 h, which reproduce the experimental profiles for both high-dose and unimplanted (also low-dose) samples by using the same single set of parameters obtained from the B profiles discussed above. Inclusion of the B concentration dependence $[\times \exp(C_{\rm B}/C_{\rm B}^{\rm cri})]$ of $D_{\rm Si(th)}^{\rm SD}$ in addition to that of $D_{\rm SiO}^{\rm SD}$ is essential to explain the ³⁰Si self-diffusion enhancement in the 650-nm-thick sample {Then, the factor $\exp(C_{\rm B}/C_{\rm B}^{\rm crit})$ is applied to D_{Si}^{SD} [Eq. (7) in Ref. 3], which represents the sum of the two contributions to Si self-diffusion}. In this sample, very few SiO molecules arrive from the interface and the B concentration enhancement of Si self-diffusion therefore takes place almost totally via thermal Si diffusion, not via the kick-out by SiO. The ³⁰Si profile in the high-dose sample

calculated without taking into account the B concentration dependence is also shown in Fig. 4. Fitting the ³⁰Si peak leads to an overestimation of the tail part, which confirms that the ³⁰Si diffusion at its peak region is enhanced by the existence of high-concentration B. The present result indicates that Si and B atoms in SiO₂ diffuse correlatively via SiO; namely, the enhanced SiO diffusion by the existence of B enhances B diffusion and Si self-diffusion. This correlation is consistent with the theoretical result that SiO molecules diffuse predominantly through interstitial sites with frequent atomic exchange interactions with substitutional atoms.8 Furthermore, because viscosity is inversely proportional to diffusivity¹⁴ and the viscosity of SiO₂ strongly depends on the impurity content,¹⁵ the increase of SiO diffusivity may be closely related to decreasing SiO2 viscosity with higher B doping.

In summary, Si self-diffusion and B diffusion in SiO₂ were simultaneously observed in ²⁸SiO₂ samples coimplanted with ³⁰Si and B. Both Si self-diffusivity and B diffusivity increase with decreasing distance from the Si/SiO₂ interface. This indicates that SiO molecules govern not only Si self-diffusion but also B diffusion. In addition, both Si self-diffusivity and B diffusivity increase as B concentration increases, indicating faster SiO diffusion with higher B concentration in SiO₂. We have developed a numerical simulation that takes into account the correlated diffusion indicated in the experiments.

The authors thank U. Gösele and K. Yamada for fruitful discussions, H. Inokawa for B implantations, and A. Takano for SIMS measurements. The work was supported in part by a Grant-in-Aid for Scientific Research No. 14076215 and 14550020, and by "High-k Network" in cooperation with academic, industry, and government institutions.

- ¹G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys. **89**, 5243 (2001).
- ²S. Fukatsu, T. Takahashi, K. M. Itoh, M. Uematsu, A. Fujiwara, H. Kageshima, Y. Takahashi, K. Shiraishi, and U. Gösele, Appl. Phys. Lett. **83**, 3897 (2003).
- ³M. Uematsu, H. Kageshima, Y. Takahashi, S. Fukatsu, K. M. Itoh, K. Shiraishi, and U. Gösele, Appl. Phys. Lett. **84**, 876 (2004).
- ⁴R. H. Doremus, J. Appl. Phys. **92**, 7619 (2002).
- ⁵T. Takahashi, S. Fukatsu, K. M. Itoh, M. Uematsu, A. Fujiwara, H. Kageshima, Y. Takahashi, and K. Shiraishi, J. Appl. Phys. **93**, 3674 (2003).
- ⁶R. B. Fair, IEEE Electron Device Lett. 17, 242 (1996).
- ⁷R. B. Fair, J. Electrochem. Soc. **144**, 708 (1997).
- ⁸M. Otani, K. Shiraishi, and A. Oshiyama, Phys. Rev. B **68**, 184112 (2003).
- ⁹M. Uematsu, J. Appl. Phys. **82**, 2228 (1997).
- ¹⁰M. Uematsu, Jpn. J. Appl. Phys., Part 2 36, L982 (1997).
- ¹¹T. Aoyama, H. Tashiro, and K. Suzuki, J. Electrochem. Soc. **146**, 1879 (1999).
- ¹²W. Jüngling, P. Pichler, S. Selberherr, E. Guerrero, and H. W. Pötzl, IEEE Trans. Electron Devices **32**, 156 (1985).
- ¹³T. Aoyama, H. Arimoto, and K. Horiuchi, Jpn. J. Appl. Phys., Part 1 40, 2685 (2001).
- ¹⁴H. Eyring, J. Chem. Phys. **4**, 283 (1936).
- ¹⁵A. J. Ikushima, T. Fujiwara, and K. Saito, J. Appl. Phys. 88, 1201 (2000).