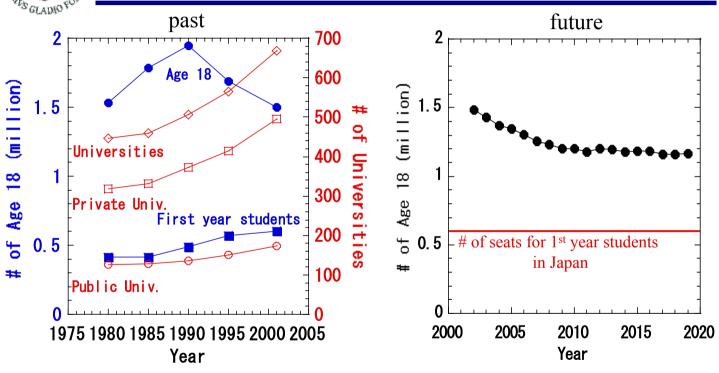


Materials Science Education at KEIO University: Adopting U.S. Instruction Practices in Japan

Kohei M. Itoh

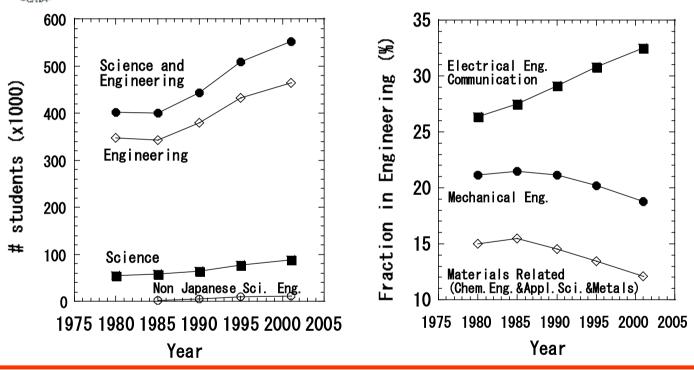
Dept. Applied Physics and Physico-Informatics, Keio University

2002 MRS Fall Meeting



Contents

- 1. Number of universities and entering students in Japan
- 2. Introductory Materials Science course for 1st year students
- 3. Solid-state physics course for 3rd year students
- 4. Lab courses for 3rd year students
- 5. Senior research
- 6. Summary



Number of universities and population of age 18 in Japan

Trend in Science and Engineering

Keio University

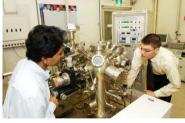
Founder: Yukichi Fukuzawa
Established in 1858 (oldest priv. university)
Letters, Economics, Law, Medicine,
Science&Technology, Business&Commerce
Policy Management, Human Relation, etc.

1,500 Full-time faculty members 28,000 Full-time undergraduate students

Currently 6 (out of 22) Ministers of Japan are Keio graduates

Science and Engineering at Keio

http://www.st.keio.ac.jp/index-e.htm


250 Full-time faculty members 4500 Full-time undergraduate students 1750 Full-time graduate students (MS&PhD)

11 Departments

Administration Engineering
Applied Chemistry (MSE related)
Applied Physics (MSE related)
Biosciences and Informatics

Chemistry (MSE related)

Electronics and Electrical Eng. (MSE related)
Information and Computer Science

Mathematics

Mechanical Eng. (MSE related)

Physics (MSE related)

System Design Engineering

1st year at Keio Sci. & Technology

Course 1: Physics related

- 1. Physics
- 2. Applied Physics
- 3. Electronics and Electrical Eng.
- 4. Mechanical Engineering

Course 2: Math related

- 1. Mathematics
- 2. Administration Engineering
- 3. Information and Computer Science

Course 3: Chemistry related

- 1. Chemistry
- 2. Applied Chemistry
- 3. Applied Physics
- 4. Bioscience and Informatics

Course 4: Mechanics related

- 1. Mechanical Engineering
- 2. System Design Engineering
- 3. Administration Engineering
- 4. Applied Chemistry

Course 5: Information Related

- 1. Information and Computer Science
- 2. Electronics and Electrical Eng.
- 3. System Design Engineering
- 4. Bioscience and Informatics

Each student belongs to one department from the 2nd year

Introduction to Materials Science

Freshmen in Course 1-5, 150 enrollments

Chapter 1: Crystal Structures&Defects

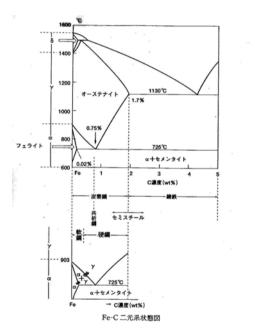
Chapter 2: Thermodynamics and Kinetics

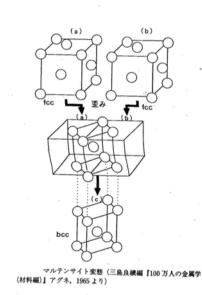
Chapter 3: Materials Science of

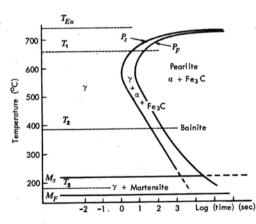
Japanese Katana (sword)

Chapter 4: Ceramics

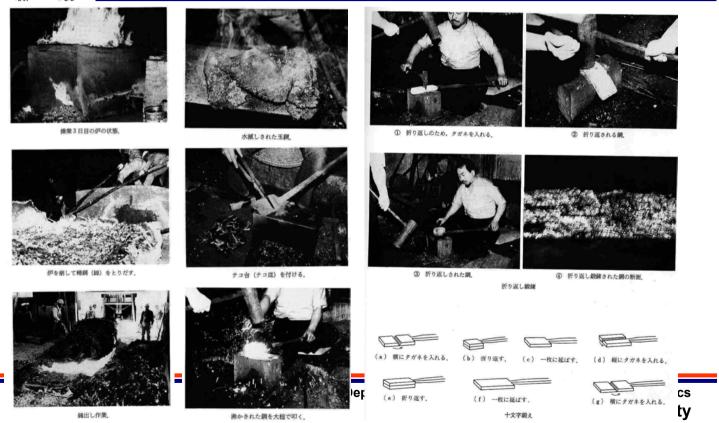
Chapter 5: Electronic Materials

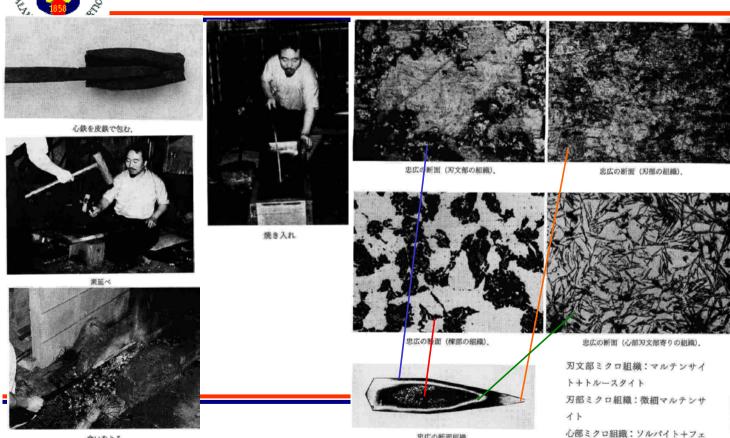

Chapter 6: Magnetic Materials


Promote students' interest in Materials Science!



Introduction to Materials Science




Introduction to Materials Science

合いをとる.

Introduction to Materials Science

忠広の断面組織。

Materials Science Program at Dept. Applied Physics and Physico-Informatics

Double major in Electrical Engineering and Physics (120/class)

2nd year: Electricity and Magnetism, Engineering Math, Electronic Circuits, Programming, Logic Circuits, Quantum Physics, Thermal Physics, Labs

3rd year: Control Engineering, Advanced Electronic Circuits, Signal Processing, Sensing Engineering, Math, Advanced Quantum Mechanics, Statistical Physics, Materials Science, Solid-State Physics, Photonics, Semiconductor Devices, Magnetics, Optical Fibers, Inorganic Electronics, Labs

4th year: Senior Research

Requirements in Red

Challenges

Japanese University Traditions

- Strict control of the Ministry of Education
- Once a week lecture for every course
- No teaching evaluation by students
- Very little homework, same exams
- Strong seniority system
- No office hours
- Little support for teaching assistants (TA)

Solid-State Physics for 3rd year

US teaching style

- Requirement Every student must take it
- Once a week lecture plus a discussion session by TA for 13 weeks
- Homework every week for 10 weeks
- Take home mid term exams
- Final exams
- Office hours, teaching evaluation
- Mechanical grading (30% HW, 20% ME, 50% FE)

Evaluation by students (after UC Berkeley)

GENERAL RATINGS

Please rank from one (1) to seven (7)

- Considering both the limitations and possibilities of the subject matter and course, how would you rate the overall teaching effectiveness of this instructor?
- 2. Focusing now on the course content, how worthwhile was this course in comparison to others you have taken in this department?

CLASSROOM PRESENTATION

Please rank from one (1) to five (5)

- 1. Gives lectures that are well organized.
- 2. Is enthusiastic about the subject matter.
- 3. Identifies what he/she considers important.
- 4. Has an interesting style of presentation.
- 5. Uses visual aids and blackboards effectively.

INTERACTION WITH STUDENTS

Please rank from one (1) to five (5)

- 1. Encourages questions from students,
- 2. Is careful and precise in answering questions.
- 3. Relates to students as individuals.
- 4. Is accessible to students outside of class.
- 5. Is friendly and helpful to students during office hours.

ASSIGNMENTS AND EXAMS

Please rank from one (1) to five (5)

- 1. Gives interesting and stimulating assignments.
- 2. Gives exams that permit students to show their understanding.
- 3. Uses a grading system that is clearly defined and equitable.

COURSE

Please rank from one (1) to five (5)

- 1. Required course material is sufficiently covered in lecture.
- 2. Pace of the course is too fast.
- 3. The required text/notes are beneficial.
- 4. Workload is heavier than for courses of comparable credit.

Department of Applied Physics and Physico-Informatics

Keio University

Reaction to the US style

1/2 love it, 1/4 think OK, 1/4 hate it.

Students who like it

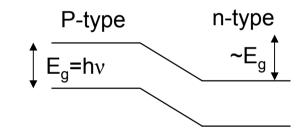
- have learned a lot (regardless of final grades)
- have found Materials Science very interesting
- have started graduate studies in the US

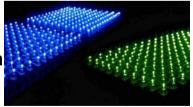
Students who think OK

- have found the work overwhelming
- have stronger interests in other fields (subjects)

Students who hate it

- have not been prepared for so much work
- have found it unfair

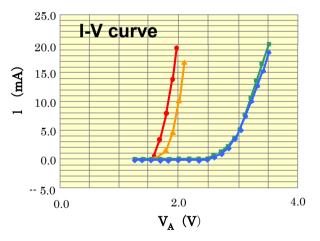

3rd Year Labs

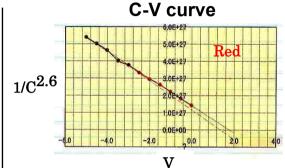

Once a week, 5 hours, for 24 weeks

- Power Amplifier
- Statistical data processing
- Brownian motion
- Hall effect
- Liquid crystal
- Light emitting diodes
- Logic circuits
- Analog computing
- Simulation and modeling
- Dielectrics and Phase transition
- Optical fibers , etc. etc.

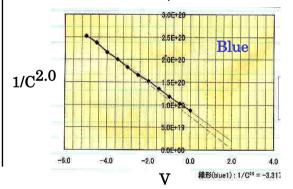
Example: Light emitting diodes (LED)

Measure I-V and C-V of Green, Blue, Orange, and Red LEDs

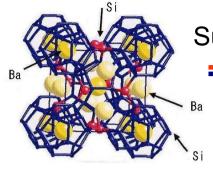

Red	~1.9 eV
Orange	~2.1 eV
Green	~2.5 eV
Blue	~2.8 eV



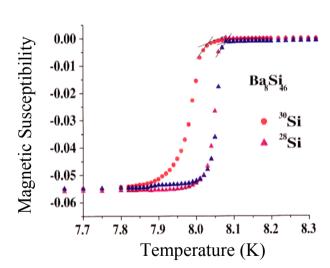
3rd Year LED Experiment

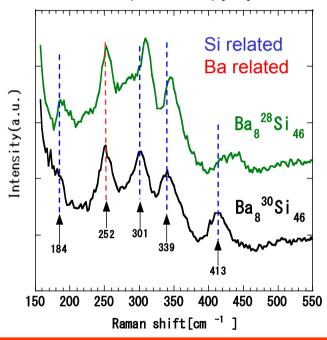


Red	~1.9 eV
Orange	~2.1 eV
Green	~2.5 eV
Blue	~2.8 eV



 $1/C^2$ for step junctions


4rd Year Senior Research

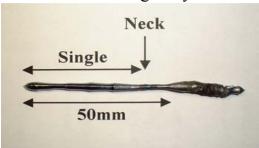

- Every student chooses an advisor and performs research
- Students take less than 3 courses in their 4th year
 Each research group establishes study group
- Unique opportunity to experience what is like to be scientists and engineers
- Experience research proposals, thesis writing,
 presentation, and possibly publishing journal papers.
- Opportunity for faculty members to evaluate students' ability to perform research

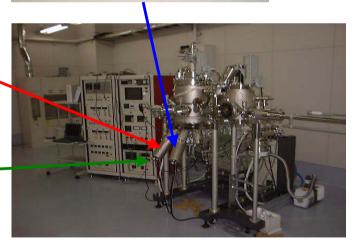
Superconductivity in Ba₈²⁸Si₄₆ and Ba₈³⁰Si₄₆

Vibrational spectroscopy by Raman

Senior Research Topics at Itoh Group

Molecular Beam Epitaxial (MBE) growth of isotopically engineered low-dimensional silicon structures


96% ²⁹Si single crystal



99.3% ³⁰Si single crystal

99.92% ²⁸Si single crystal

Summary

- Interest in Engineering is going up but in Materials
 Science is going down in Japan
- 1st year general Materials Science course is important
- US teaching style has been well received
- Strong emphasis on undergraduate lab courses
- Senior research has been successful
- English-based graduate programs on Nanoscience is starting on Fall 2003.
 http://www.st.keio.ac.jp/index-e.htm

