Local vibrational modes of oxygen in isotopically enriched ²⁸Si, ²⁹Si, and ³⁰Si single crystals

$J. \ Kato^{A}, \ \underline{K. \ M. \ Itoh^{A}}, \\ H. \ Yamada \ Kaneta^{B}, \ and \ H. \ \ J. \ Pohl^{C}$

A Dept. of Applied Physics and CREST-JST, Keio University, Yokohama, 223-8522 Japan

^B Integrated Materials Laboratory, Fujitsu Laboratorries Limited, 10-1 Morinosato-Wakamiya, Atsugi 243-0197, Japan

^c Vitcon Projectconsult GmbH, Dornbluthweg 5, D-07743, Jena, Germany

Samples									
SI-28: CZ ²⁸ Si $[O]=4.75 \times 10^{17} \text{cm}^{-3}$ (28Si:99.86%, 29Si: 0.13%, 30Si: 0.2%) SI-29: CZ ²⁹ Si $[O]=1.01 \times 10^{18} \text{cm}^{-3}$ (²⁸ Si:2.17%, ²⁹ Si: 97.10%, ³⁰ Si: 0.73%)	Instrument BOMEM DA-8 Source: Globar Detector: MCT $T=4K \sim 290K$ Resolution 0.03cm ⁻¹								
[O]= 8.79×10^{17} cm ⁻³ (²⁸ Si:0.67%, ²⁹ Si: 0.59%, ³⁰ Si: 98.74%)	97% ²⁹ Si single crystal								
SI-Nat: CZ ^{natural} Si [O]= 6.49×10^{17} cm ⁻³ (²⁸ Si:92.2%, ²⁹ Si: 4.7%, ³⁰ Si: 3.1%)	10mm								
	Institute of crystal growth in Berlin								

Comparison of experimental result and calculation								
A _{2u} energy	calculation [cm ⁻¹]	Experimental result [cm ⁻¹]	A _{2u} energy	calculation [cm ⁻¹]	Experimenta result [cm ⁻¹]			
²⁸ Si- ¹⁶ O- ²⁸ Si	1136.5	1136.5	²⁸ Si- ¹⁸ O- ²⁸ Si	1087.4	1084.4			
²⁸ Si- ¹⁶ O- ²⁹ Si	1134.0	1134.4	²⁸ Si- ¹⁸ O- ²⁹ Si	1084.9				
²⁸ Si- ¹⁶ O- ³⁰ Si	1131.8	1132.0	²⁸ Si- ¹⁸ O- ³⁰ Si	1082.5				
²⁹ Si- ¹⁶ O- ²⁹ Si	1131.6	1132.5	²⁹ Si- ¹⁸ O- ²⁹ Si	1082.2	1081.0			
²⁹ Si- ¹⁶ O- ³⁰ Si	1129.3	1130.8	²⁹ Si- ¹⁸ O- ³⁰ Si	1079.8				
	1105.0	1100.1	300: 180 300:	1077.4				

Positions of LVM lines												
	28 Si	28 Si	28 Si	²⁹ Si	²⁹ Si	³⁰ Si	28 Si	28 Si	28 Si	29 Si	²⁹ Si	³⁰ Si
	¹⁶ O	¹⁸ O										
$ A_{2u}, A_{1g}, k, / \rangle$	²⁸ Si	²⁹ Si	³⁰ Si	²⁹ Si	³⁰ Si	³⁰ Si	²⁸ Si	²⁹ Si	³⁰ Si	²⁹ Si	³⁰ Si	³⁰ Si
0,0,0,0>→0,0,0,±1>	29.25						27.2					
0,0,0,±1>→0,0,0,±2>	37.7						35.3					
0,0,0,±1>→0,0,1,0>	48.6											
0,0,0,±2>→0,0,0,±3>	43.3											
0,0,1,0>→0,1,0,±1>	517						517					
0,0,0,±1>→0,1,1,0>	668											
$ 0,0,0,\pm 2\rangle \rightarrow 0,1,0,\pm 3\rangle$	664											
0,0,0,±1>→ 0,1,0,±2>	657.4											
<u> 0,0,0,0>→ 0,1,0,±1></u>	648.2											
<u> 0,0,0,±1>→ 0,1,0,0></u>	588.4											
$ 0,0,0,\pm 2\rangle \rightarrow 0,1,0,\pm 1\rangle$	580.2											
0,0,1,0>→ 0,1,0,±1>	5/0	1104.4	1100.0	1100 5	1100.0	1100.1	1004.4			1001		
$ 0,0,0,0\rangle \rightarrow 1,0,0,0\rangle$	1130.4	1108.4	1132.6	1132.5	1130.8	1129.1	1084.4			1081		
	1128.2	1120.4		1124.0		11147	10/0./					
$ 0,0,0,\pm 2\rangle \rightarrow 1,0,0,\pm 2\rangle$	1205.7			12014		11071	10/1					
$ 0,0,0,0,0\rangle \rightarrow 1,0,1,0\rangle$	1216 4			1201.4		1107.1						
0,0,0,0,1 + 1,0,1,1	1748.6			1734.4		1721.2	1150.8					
$ 0,0,0,\pm 1\rangle \rightarrow 1,1,0,\pm 1\rangle$	1740.9			1727.6		1714.2	1100.0					
$ 0.0.0,\pm 2\rangle \rightarrow 1.1.0,\pm 2\rangle$	1734.1			1/2/.0		1/17.4						
0.0.0.0>→11.1.1.0>	1819.5											
0,0,0,±1>→1,1,1,±1>	1831.3											
(in unit of cm ¹)												

Conclusion

We have measured LVMs of oxygen in isotopically enriched ²⁸Si, ²⁹Si, ²⁹Si and ³⁰Si crystals

- I . Experimentally obtained the LVM energies in ²⁸Si, ²⁹Si, ²⁹Si and ³⁰Si agree with the theoretical calculation.
- II. LVM peak position also shifts due to the effect of the host Si atoms.
- Ⅲ. LVM linewidth is changed due to the effect of mass disorder. However, It also depends on some other effect (one example is the difference of the multi-phonon emission).