| ナノテクノロジーにもとづく<br>量子コンピュータ開発                                     |  |  |  |
|-----------------------------------------------------------------|--|--|--|
| 伊藤公平<br>Kohei M. Itoh<br>慶應義塾大学物理情報工学科<br>科学技術振興事業団·戦略的創造研究推進事業 |  |  |  |
| 共同研究者                                                           |  |  |  |
| 慶大理工:阿部英介,松本佳宣,東北大通研:大野裕三,大野英男,<br>スタンフォード大:山本喜久,新潟大工学部 佐々木進    |  |  |  |
| 平成15年2月3日 第一回ナノテクノロジー総合シンポジウム(JAPAN NANO 2003)                  |  |  |  |

## 発表内容

- 1.量子コンピュータ研究の現状
- 2.15 3×5の素因数分解
- 3. 量子コンピュータのいくつかの例
- 4. 全シリコン量子コンピュータ All-Silicon Quantum Computer
- 5.まとめ











| 超並列計算(量子並列性) |     |   |           |                              |
|--------------|-----|---|-----------|------------------------------|
|              |     |   |           |                              |
| 0            | 0   | 0 | 0         | )                            |
| 0            | 0   | 1 | 1         |                              |
| 0            | 1   | 0 | 2         |                              |
| 0            | 1   | 1 | 3         | 2 <sup>n</sup> 通りの数が一        |
| 1            | 0   | 0 | 4         | 気に処理できる                      |
| 1            | 0   | 1 | 5         |                              |
| 1            | 1   | 0 | 6         | 200量子ビット                     |
|              | 1   | 1 | 7         | $2^{200}=1.6 \times 10^{60}$ |
|              | 2進数 |   | ¥<br>10進数 | 宇宙の原子数!                      |



| 量子コンピュータの実現にむけて                                                    |                         |                           |          |
|--------------------------------------------------------------------|-------------------------|---------------------------|----------|
|                                                                    |                         |                           |          |
| 2 . 総演算ステップ数≡ <u>位相緩和時間 T<sub>2</sub></u><br>スイッチ時間 t <sub>s</sub> |                         |                           |          |
| 量子ビット                                                              | 緩和時間 T <sub>2</sub> (秒) | スイッチ時間 t <sub>s</sub> (秒) | 総演算ステップ数 |
| 電子準位                                                               | 10 -9                   | 10 -13                    | 10 4     |
| 電子スピン                                                              | 10 -6                   | 10 -10                    | 10 4     |
| イオン準位                                                              | 10 -1                   | 10 -14                    | 10 13    |
| 核スピン                                                               | 10 <sup>3</sup>         | 10 -4                     | 10 7     |
| 光子 偏光が情報を担い手 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)               |                         |                           |          |











| 2.素因数分解の計算(15=3×5の場合)                                                 |                             |  |  |
|-----------------------------------------------------------------------|-----------------------------|--|--|
| 確定的モデル 15÷2,15÷3,15÷4・・・・をつづけ<br>割り算の答えとあまりを求める                       |                             |  |  |
| 確率的モデル (乱数でためす) $F_n = m^n (\mod N)  m^n \overline{e} N$ で割ったあまり を求める |                             |  |  |
| $F_n = 2^n \pmod{15}$                                                 | 例としてN=15, m=2を選ん<br>だ場合を考える |  |  |
|                                                                       |                             |  |  |

| 確率的計算                                  | $F_n =$ | $=2^n \pmod{15}$                |
|----------------------------------------|---------|---------------------------------|
| N=15, m=2                              | こたえ     |                                 |
| F <sub>0</sub> =2 <sup>0</sup> ÷15のあまり | 1       |                                 |
| F <sub>1</sub> =2 <sup>1</sup> ÷15のあまり | 2       |                                 |
| F <sub>2</sub> =2 <sup>2</sup> ÷15のあまり | 4       |                                 |
| F <sub>3</sub> =2 <sup>3</sup> ÷15のあまり | 8       | J                               |
| F <sub>4</sub> =2 <sup>4</sup> ÷15のあまり | 1       | $m^{r/2} + 1 = 2^{4/2} + 1 = 5$ |
| F <sub>5</sub> =2 <sup>5</sup> ÷15のあまり | 2       | $r/2$ 1 $2^{4/2}$ 1 2           |
| F <sub>6</sub> =2 <sup>6</sup> ÷15のあまり | 4       | m -1 = 2 -1 = 3                 |
| F <sub>7</sub> =2 <sup>7</sup> ÷15のあまり | 8       |                                 |

| 古典的計算機内での処理 $F_n = 2^n \pmod{15}$ |                         |                                             |                |
|-----------------------------------|-------------------------|---------------------------------------------|----------------|
|                                   | 10進                     | 2進                                          |                |
| F <sub>n</sub>                    | 2 <sup>n</sup> (mod 15) | レジスター1(n) レジスター2<br>2 <sup>n</sup> (mod 15) |                |
| $F_0$                             | 1                       |                                             | 20             |
| $F_1$                             | 2                       |                                             | 21             |
| $F_2$                             | 4                       |                                             | 2 <sup>2</sup> |
| $F_3$                             | 8                       |                                             | 23             |
| $F_4$                             | 1                       | 0 1 0 0 0 1                                 | 20             |
| $F_5$                             | 2                       |                                             | 21             |
| $F_6$                             | 4                       | 0 1 1 0 0 1 0 0                             | 22             |
| $F_7$                             | 8                       |                                             | 23             |
| 本当はレジスター1を一気に作りたい                 |                         |                                             |                |



| 量子計算では $F_n = 2$                                        | $2^n \pmod{15}$                |
|---------------------------------------------------------|--------------------------------|
| レジスター1(n) レジスター2<br>2 <sup>n</sup> (mod 15)             |                                |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ |                                |
|                                                         | 2 0 2 4 6 8 10 12<br>22 Fn@n@# |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ |                                |
|                                                         |                                |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $2^2$ $\mathbb{Z}^3$           |
|                                                         | 024681012<br>周期rの値             |









| 半導体同位体工学                                                                                                                             |               |                                                                                                 |  |
|--------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------|--|
| 安定同位体                                                                                                                                |               | 伊藤公平、固体物理、1998年33巻965頁                                                                          |  |
| <sup>28</sup> Si 92.2%<br><sup>29</sup> Si 4.7%<br><sup>30</sup> Si 3.1%                                                             | 1/2<br>(被スピン) | <sup>69</sup> Ga 60.1% 3/2<br><sup>71</sup> Ga 39.9% 3/2<br>(棟スピン)<br><sup>75</sup> As 100% 3/2 |  |
| 70Ge         20.5%           72Ge         27.4%           73Ge         7.8%           74Ge         36.5%           76Ge         7.8% | 9/2<br>(被スピン) | 安定同位体を利用した<br>核スピン制御                                                                            |  |





































