Magnetic Resonance

Paola Cappellaro Quantum Engineering Group – MIT qeg.mit.edu

Learning goals

- Principles of magnetic resonance
 - Resonance, spin Hamiltonian
 - Experimental apparatus, detection methods
 - Decoherence and relaxation
- Simple experiments:
 - CW, Rabi, FID, Echo, CPMG, WHH...
- Control and Hamiltonian shaping
 - Dynamical decoupling, Average Hamiltonian
 Theory

Magnetic resonance

 Magnetic resonance is the exchange of energy between the electromagnetic field and nuclear or electronic spins

Zeeman interaction

Interaction of spin with a magnetic field

 $|I, m_{+}\frac{1}{2}\rangle$

 $|I, m_{\mathcal{I}}^1\rangle$

 $\Delta E = \hbar \omega_L$

Ε

C

$$\mathcal{H}=\hbar\gammaec{B}\cdotec{I}=\hbarec{\omega}_L\cdotec{I}$$

Selection rules:

 $\Delta m_I = \pm 1$

Classical picture

 Magnetic dipole interacting with a magnetic field: precession at Larmor frequency

 $\frac{d\vec{M}}{dt} = -\gamma \vec{B} \times \vec{M}(t)$ $= -\vec{\omega}_L \times \vec{M}(t)$

Interactions

- Local environment induces changes in the resonant frequency: spectroscopy
 - Chemical shift
 - Local electron currents counteract the applied field: $B_{
 m eff} = B(1-\sigma)$ 10-100ppm
 - Hyperfine
 - Electron-nuclear spin interaction

$$ec{S}\cdot\hat{A}\cdotec{I}$$
 (kHz-MHz)

- J-coupling
 - Electron-mediated nuclear-nuclear coupling

$$Jec{I_1}\cdotec{I_2}$$
 (Hz

Interactions

- Local environment induces changes in the resonant frequency: spectroscopy
 - Dipolar coupling
 - Dipole-dipole coupling (nuclear/electron)

$$\frac{\hbar \gamma_i \gamma_j}{|r_{ij}|^3} \left[\vec{I}_i \cdot \vec{I}_j - \frac{3(\vec{I}_i \cdot \vec{r}_{ij})(\vec{I}_i \cdot \vec{r}_{ij})}{|r_{ij}|^2} \right] \quad \text{(kHz)}$$

Secular component

 $\frac{\hbar\gamma_i\gamma_j}{|r_{ij}|^3} (3\cos\theta_{ij}^2 - 1) \left[2I_{i,z}I_{j,z} - (I_{i,x}I_{j,x} + I_{i,y}I_{j,y})\right]$

- Quadrupolar
 - For spins I>1/2, $\vec{I} \cdot \hat{Q} \cdot \vec{I}$ (0-30 MHz)

Nuclear Magnetic resonance

- Large magnetic field:
 - Small polarization, large spin ensemble (10⁷-10⁹)
 - 2 23.5 Tesla = 100MHz-1GHz
- Signal observed by induction

NMR system

Superconducting magnet + spectrometer

EPR/ESR

- Electron paramagnetic resonance
- Electron spin resonance
- Higher frequency and higher polarization
 - Microwave instead of radiofrequency

Waveband	L	S	С	Х	Р	K	Q	U	V	Ε	W	F
ω [GHz]	1	3	4	10	15	24	35	50	65	75	95	111
B [T]	0.03	0.11	0.14	0.33	0.54	0.86	1.25	1.8	2.3	2.7	3.5	3.9

Detection

- Induction coil: e.g. liquid-state NMR
- Optical (ODMR): e.g. Nitrogen-Vacancy center
- Electrical (EDMR): e.g. quantum dots
- Magnetic resonance force microscopy (MRFR)
- Faraday rotation, Squids magnetometers

CW vs. FT: Continuous wave

 Scan the magnetic field or the excitation frequency

Magnetic Field Strength (G)

CW vs. FT: - Fourier Transform

- Rotate the spin to the transverse plane and observe its evolution
 - Spectrum obtained by Fourier Transform

Pulse control

rf field "rotating" at the Larmor frequency

 In a frame rotating at the Larmor frequency, it becomes a static field

Pulse control

rf field "rotating" at the Larmor frequency
 It induces a rotation of the spin

Rotating-Wave Approximation

rf and μw fields are oscillating, not rotating

- we neglect the counter-rotating component

– Far off-resonance, it is averaged in time if

$$\omega_{\rm res} \gg \Omega_{\rm Rabi}$$

Pulse control

- If the rf field does not rotate at the Larmor frequency
 - Not on resonance

Pulse control

- In the rotating frame there is a residual component along the z-axis
 - The rf is not as effective in rotating the spin

Rabi Rotations

• Oscillations driven by rf field:

- Calibrate pulse length
- Achieve longer coherence because of partial decoupling from environment

Ramsey (Free Induction Decay)

• Oscillations driven by internal Hamiltonian:

- Measure transverse polarization
- Oscillation at the Larmor frequency

Bloch Equations

Classical picture of a dipole in a magnetic field

$$\frac{\dot{M}}{dt} = \gamma \vec{M}(t) \times \vec{B}$$

- Add decay:
 - Transverse decay

d

 $-\frac{1}{T_2}(M_x\hat{x} + M_y\hat{y})$

Longitudinal decay

 $-\frac{1}{T_1}(\vec{M}-M_0)\cdot\hat{z}$

Relaxation

- Longitudinal relaxation
 - Energy exchange, change in $\langle I_z
 angle$
 - Relaxation toward thermal equilibrium
 - Time-scale: T_1
- Transverse relaxation
 - Decay of transverse components, $\langle I_{x,y}
 angle$
 - Loss of coherence, dephasing
 - Time-scale: $T_2 < T_1$
 - Interaction with spin bath
 - Often non-Markovian (super-exponential decay)

Thermal state

 At room temperature, the equilibrium state is highly mixed

$$\rho = e^{-\beta \mathcal{H}} / Z \approx \frac{1}{\dim} - \epsilon \sum_{k} I_{z,k}$$

 Only the deviation from identity gives rise to the dynamics and the signal

$$\rho \sim \sum_{k} I_{z,k}$$

Ramsey (Free Induction Decay)

• Oscillations driven by internal Hamiltonian:

FID Spectrum

Fourier Transform of FID gives the spectrum

• FWHM = $1/\pi T_2$

Spin Echo

- Simple sequence "inverts" the arrow of time
 - Spins precess at different frequencies: dephasing
 - π pulse inverts the speed: spins are refocused

CPMG – Dynamical decoupling

- Spin echo works for quasi-static fields
 - If noise varies in time, refocusing is not perfect
 - To look at longer times: keep applying π -pulses!

- Carr-Purcell sequence

• With Meiboom-Gill trick to correct pulse errors

Average Hamiltonian Theory

- Goal: modulate internal Hamiltonian to create effective interaction.
 - E.g. : to refocus interaction with environment

Average Hamiltonian Theory

• Two-spin Hamiltonian $\mathcal{H}_{zz} \sim 3I_{i,z}I_{j,z} - I_i \cdot I_j$ - In the toggling frame:

$$\begin{array}{cccccccc} \mathbf{x} & \mathbf{y} \\ \mathcal{H}_{zz} \tau & \mathcal{H}_{yy} \tau & \mathcal{H}_{xx} \tau \end{array}$$

the Hamiltonian becomes on average

$$\bar{\mathcal{H}} = \frac{1}{3}(\mathcal{H}_{xx} + \mathcal{H}_{yy} + \mathcal{H}_{zz}) = 0$$

• Refocusing of internal couplings

Average Hamiltonian Theory

- AHT gives rule for quick calculation of effective average Hamiltonian
 - It helps in designing pulse sequences
- Effective Hamiltonian from Magnus expansion

$$U = e^{-it\bar{\mathcal{H}}} = \exp\{-it[\bar{H}^{(0)} + \bar{H}^{(1)} + \bar{H}^{(2)} + \dots]\}$$

$$\bar{H}^{(0)} = \frac{1}{t} \int_0^t H(t') dt'$$
$$\bar{H}^{(1)} = -\frac{i}{2t} \int_0^t dt' \int_0^{t'} dt'' [H(t'), H(t'')]$$

AHT

• Conditions:

- \mathcal{H}_{rf} cyclic: $U_{rf}(t_{c,0}) = \pm 1$
- \mathcal{H}_{rf} periodic: $\mathcal{H}_{rf}(t) = \mathcal{H}_{rf}(nt_c+t)$

 $U_{rf}(Nt_{c,0}) = 1$

- $-t_{c}|\mathcal{H}_{int}| \approx t_{c} \omega \ll 1$ (convergence condition)
- Stroboscopic observation at t=nt_c

Advantages:

- Evolution at t=nt_c is determined by the average Hamiltonian over 1 cycle.
- Toggling-frame Hamiltonian coincide with labframe

Non ideal rf perturbations

- Pulse-width error: $\mathcal{H}_{\delta} = -(\pm \delta_{\pm x}/t_w)I_x$
- B_1 inhomogeneities for ith nucleus: $\mathcal{H}_{\varepsilon_i} = -(\pm \varepsilon_i/t_w)I_x$
- Phase-misadjustement error: $\mathcal{H}_{p} = -(\pm \varphi_{\pm x})I_{y}$
- Pulse transients error: $\mathcal{H}_{T} = -\omega_{T}(t)I_{y}$

 The errors can be included in the internal Hamiltonian to calculate their effects

Symmetric sequences

- Higher orders and pulse errors can be corrected by symmetrized sequences
 - Solid-echo sequence:

– WAHUHA (Waugh Haeberlen Hahn)

 $\mathcal{H}(t) = \mathcal{H}(t_c - t)$: all odd terms are zero

Supercycles

Build symmetrized sequence from basic units

For example, MREV-8 repeats the basic WAHUHA cycle twice with the x pulses reversed in phase. This removes the effects of rf inhomogeneity, since toggling frame terms in I_z are inverted during the second half

Dynamical decoupling

- Periodic DD (repeat basic sequence)
- Concatenated DD (nest basic sequence)
- Optimal/Quadratic DD (optimized for a given noise spectrum)

Solid State NMR

- Dipolar Hamiltonian
- Control: multiple-pulse sequences to refocus or manipulate the dipolar Hamiltonian
- Multiple Quantum Coherences
 |s)(r|, coherence order n=r-s
 - r+s+q=m-spin state.

$$\mathcal{O}_{\mathbf{i}_1}^+ \mathcal{O}_{\mathbf{i}_2}^+ \cdots \mathcal{O}_{\mathbf{i}_r}^+ \mathcal{O}_{\mathbf{j}_1}^- \cdots \mathcal{O}_{\mathbf{j}_s}^- \mathcal{O}_{\mathbf{k}_1}^{\mathbf{Z}} \cdots \mathcal{O}_{\mathbf{k}_q}^{\mathbf{Z}}$$

 $|r\rangle\langle s|+|s\rangle\langle r|_{\varsigma}$

S

Multiple quantum NMR

- Multiple Quantum Coherences order *n* :
 - *n=∆M*, difference in Zeeman quantum number between any two states in a coherent superposition.
 - In terms of single spin Pauli operators : $\sigma_{i_1}^+ \sigma_{i_2}^+ \cdots \sigma_{i_r}^+ \cdot \sigma_{j_1}^- \cdots \sigma_{j_s}^- \cdot \sigma_{k_1}^z \cdots \sigma_{k_q}^z \longrightarrow n = r - s$
- Indirect observation of correlations among spins

MQC experiments

Directly observed ~50 coherences
 — Much larger number of spins involved.

H. Cho, et al. Phys. Rev. B , 72, 054427, (2005)

Conclusions

- Magnetic resonance has a long history

 and a lot of acronyms!
- Strengths:
 - Simplicity of (basic) Hamiltonian
 - Complexity of full systems

(e.g. solid state, relaxation)

– Control:

Many schemes to manipulate quantum evolution (somebody already did it 50 years ago!)

