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Timeline

1959: There's plenty of room at the bottom

“What | want to talk about is the problem of manipulating
and controlling things on a small scale.”

-R. P. Feynman

1982: Simulating physics with computers

“Nature isn't classical, dammit, and if you want to make a simulation
of nature, you'd better make it quantum mechanical...”
-R. P. Feynman

1984: Quantum communication (Bennett and Brassard)
1994: Shor's algorithm - factoring

1995: Quantum error correction (Shor/Steane)

1996: Grover's algorithm - database search

181 ness 1990's: Age of proposals: Cavity QED, ions (1995),

Eii';?'f'_'_-"";"": NMR, electron spins, superconductors (1997), ...

1996: DiVincenzo Criteria




Timeline: Spins in quantum dots

2000: Single electrons in (lateral) quantum dots (NRC, Ottawa) (DiV. 1)
2002: Spin lifetime 200 ps (NTT, Tokyo)

2003: Spin initialization and readout (lateral dots, Delft) (DiV. ILV)
2005: Spin coherence (Harvard), T "°=10 ns (DiV. 1l1)
2006: Single-spin echo (Delft): T *" > 1 us

2007: Electron spin relaxation (energy dissipation): T > 1 s (Munich, Delft, MIT)

2008: Electrically controlled selective spin rotation (Tokyo) (DiV. IV)

2008/2009: Hole spin T > 1 ms, T "> 1 ps (lower bound) (Heriot-Watt)

2010: Extension to T,"°~100 ns via nuclear spin state narrowing
(Harvard, Tokyo)

2010: Dynamical decoupling: T_*" ~ 270 us (Harvard)
2



Why Spintronics?

Low power, faster devices, additional control

“0” =1 “17 =| (new bits)

Why Quantum Information Processing?

Exponential speedup in algorithms, physical simulation,
secure communication, metrology

0)=11) )= (qubs)
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Encoding: Single spins?

V(r)
: |
k hwo ~ 1 meV
A AFE ~ 10eV .
/
r ‘conventional’
encoding:

> Logical

—10 Physical : —7
~ 10 m qubit qubit ~ 10" 'm




Encoding: Alternatives?

Conventional Encoding (single spin)
1) —10) 1) — (1)

Pro: Well-defined two-level system.
Con: Difficult to control electrically?

Two-spin Encoding (singlet-triplet)

T = (T =10 18) = 1

V2
Pro: Easier to control electrically.
Con: One logical qubit for two spins; Susceptible to charge fluctuations.

(It —H1) = 1)

Three-spin Encoding

Pro: All-electrical control, qubits immune to global noise.
Con: One logical qubit for three spins; predominant noise source (nuclei) is local.



*Encoding

e|nitialization/readout %




Readout: Spin-to-charge conversion




Spin-to-charge conversion:
Energy-dependent tunneling

Elzerman et al., Nature (2004)



Spin-to-charge conversion:
Energy-dependent tunneling

Elzerman et al., Nature (2004)

Finite T: Readout efficient only for sufficiently large B

g*upB > kT  (B>1T, GaAs)



Spin-to-charge conversion:
Pauli spin blockade (high T)

Current blocked for triplets due to Pauli exclusion:
; A ) =)
T—> — \/\/>

Th) = 7 (T4 + 1)

Current allowed for singlets:

1
l S) = =5 (1) = k1)

Ono, Austing, Tokura, Tarucha, Science (2002)
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Spin-to-charge conversion:
Pauli spin blockade

Current blocked for triplets due to Pauli exclusion:

‘ T_|_> _ /\/\>
l T2) = |t
To) = 7 (1T + 1)

Current allowed for singlets:

1
l S) = =5 (1) = k1)




Initialization: Thermalize

H =g upBS, g*=-04 (GaAs)
B=1T
1) . T = 100 mK
Pl _ —lg*usB|/ksT _
) : i — e |9 HB BS = (.06

But: Need to wait a time T, (long) for relaxation.

Alternatives:
(1) Pump the spin to non-equilibrium initial state (e.g., optically).
(2) Briefly decrease T, to equilibrate rapidly.



Initialization:
Decrease T : Inelastic cotunneling

Energy B

, A

AE4 q ‘¢AE ’ By

15) =

1
F. Qassemi, WAC, F. K. Wilhelm, PRL (2009) \/_
N. S. Lai et al., arXiv (2010)

(14 = 1))

Only ‘TT) prepared!
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Universal control

Single-qubit control:
Electron spin resonance

> B
/@4 0B cos (wt)

<Sz>

— B : Rabi oscillations

\ AR
—/ U




Universal control

Single-qubit control: Two-qubit control:
Electron spin resonance pulsed exchange

> B
/6\4 0B cos (wt)
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w = B : Rabi oscillations
\vf\\ H(t) = J(t)SL - Sk




Universal control

Single-qubit control: Two-qubit control:
Electron spin resonance pulsed exchange

‘.

\ ~__ > 0B cos(wt)

<Sz>

w = B : Rabi oscillations
\\/m\ H(t) = J(t)SL - Sk

Slow! Fast!




Problem: Photon-assisted tunneling

I'=20
T (e) = %:Jg (%) 6(e — nw)

1 To reduce escape rate:

Small amplitude Vb
Electric-field modulation.

Low frequency W

@ Vac = Vo cos(wt)

Kouwenhoven et al., PRB (1994)

Decrease B-field or use pulsed
scheme (no ac modulation).




Universal control:
Electrically controlled Spin Resonance

Idea 1)

Move spin periodically using an electric field in
presence of slanting Zeeman field; get an ac magnetic
field in the rest frame of the electron.

Tokura et al., PRL (2006)
Pioro-Ladriere et al., Nat. Phys. (2008)

Idea 2)

Move spin periodically in spin-orbit field to generate
an effective ac magnetic field:

EDSR = “Electric dipole spin resonance”.

— Position
LeacE(1)

Golovach, Borhani, Loss, PRB (2006)
Nowack et al., Science (2007)



Universal control:
Pulsed exchange (single spins)

Fast!

Achievable error rate:

n~ 1077

WAC and Loss, PRB (2007)
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Coherence
Problem: One spin sees many

WAC and Baugh, “Nuclear spins in nanostructures” Phys. Stat. Solidi B (2009)



Quantum Coherence:
Why do we care?

Computing and information technology

MRI Imaging

The avian compass



Goal: Quantum Information Processing

’\Ijout>

44 [djd




Goal: Quantum Information Processing

Initialization Arbitrary unitary ’\I’out> Readout
0), 7
0)4 A4

o o

® ®

o o
0) 1 —— 7
0) v A=

Physical Implementation:

(4
U =T exp {—z/ dt’H(t’)} H e Hs
0



Reality: Imperfections

Initialization Arbitrary unitary ‘\Ijout> Readout

<
4

[

o

[
i
4

t
U =T exp {—z/ dt' (H(t") + 5H(t’))} OH € Hs @ HE
0



Energy Relaxation: "T ~




Energy Relaxation: “T ”?

1

75 T+ 1)
Reservoir

Reservoir in equilibrium:
n 1 _
Pr _ Wi —~ A4+ /kBT
W — €
WT—>¢ ATi =1 Pl WT—>¢

Y .
4) (Detailed Balance)



Dephasing (‘decoherence’): “T 7’

1 1 1
2 1 1
(spatial inhomogeneity)
1 O
O 1

.\ Typically: T5 << Ty

TiFID - In general: 15 < 277

wlb—‘

\ “Free-induction decay” time



Spin echo (static inhomogeneity):




Semiclassical “belief”:
Single spin will not decay

NSV

But for a quantum environment, can still get decay:

1 1
‘¢E> — ch ‘wk> <Sa;>t — 5 Z ‘Ck‘z COS (wkt) ~ _e_t/Tdec.
k

k




Semiclassical “belief”:
Single spin will not decay

SyES

Still reversible: H =&S,; o ,Ho, =

9(2t)) = oge”Moze M [1(0)) = UT (1)U () |4(0)) = [4(0))



General principle: Time reversal

Ideally choose U to be the time-reversal operation:

UiHU, = —H = [¢(2t)) = U(-t)U(t) [¢(0))



Spin-echo envelope decay

Message: 5" is not the 'intrinsic' single spin decay time.

The decay time is different for every pulse sequence!



Dynamic fluctuations;
repeated pulses (dynamical decoupling)

41l

— @ — [
¥(2t)) = Uan(—t/N)Uan—-1(t/N)---Uz(—t/N)U1(t/N) |1(0))

“Carr-Purcell-Meiboom-Gill” (CPMG) sequence
(with t/N < correlation time of B(t))




Types of error
In addition to initialization/readout error

Gate error (free-induction decay)

Error-correction
threshold

n<ne~10"%—1072




Types of error
In addition to initialization/readout error

Gate error (free-induction decay)
FID
= n~tg/ Ty
FID
~ (S5(t)) x e t/T2

tg
Memory error (echo/dynamical decoupling)

Error-correction
threshold

n<ne~10"%—1072




Types of error
In addition to initialization/readout error

Gate error (free-induction decay) Error-correction

E?g 4 0~ t, /TP threshc6>ld |
= (Salt)) o ot/ IO
ty
~ L. Memory error (echo/dynamical decoupling)
ig /\ ____________ } t /Ty CHO / ot/ T3 MO
PN
L'_’T2FID j\ ?

Even for single spin: 7,°°"° # T;™  “Intrinsic' decay time is a myth!



Types of error
In addition to initialization/readout error

Gate error (free-induction decay) Error-correction

SH A 7 ~ tg/TQFID thresljc6>ld )
C\Q/ <S (t)> « e_t/T2FID n<ne~ 107" —10
X

tg
: : : : FID __
Focus on reducing gate error (increasing FID time): 15 =15

Caveat: Gating and decay not always independent
(should really determine the gate fidelity).

e.g.: F:TI‘{UTU}



Some recent developments in
dynamical decoupling

week endin
PRL 98, 100504 (2007) PHYSICAL REVIEW LETTERS 90 MARCH 2007

" U D D” ((.':O n Cate n ated Keeping a Quantum Bit Alive by Optimized 7-Pulse Sequences
deCOU pllng) Gotz S. Uhrig*

Lehrstuhl fur Theoretische Physik I, Universitat Dortmund, Otto-Hahn Strafie 4, 44221 Dortmund, Germany
(Received 26 September 2006: published 9 March 2007)

Universal Dynamical Decoupling of a Single Solid-State Spin from a
Spin Bath

G. de Lange, et al.

Science 330, 60 (2010);

AVAAAS DOI: 10.1126/science. 1192739

nature Vol 458|2:

LETTERS

Optimized dynamical decoupling in a model
quantum memory N

Michael J. Biercuk"**, Hermann Uys'~*, Aaron P. VanDevender', Nobuyasu Shiga't, Wayne M. Itano’

& John J. Bollinger' L E T T E R S

Preserving electron spin coherence in solids by
optimal dynamical decoupling

Jiangfeng Du', Xing Rong', Nan Zhao?, Ya Wang', Jiahui Yang' & R. B. Liu”



Quantum Dynamics
s

Quantum Engineering (ideal):
Y(t)) =U@) [(0)) U®) =Te "o HEd  HeHsg

The Reality: [4(0)) — p(0)
U (t) = Te ' Jo (HE)+SHE))dt’ 0H € Hs @ H




What can go wrong?

(1) 0H(t) unknown.

‘ “Model” environment and coupling
(e.g., spin-boson, other phenomenological model)?

(2) Environment state unknown.

‘ Assume a thermal equilibrium state?

(3) U'(¢) too complicated.

‘ Weak-coupling expansion?



Dephasing “decoherence’™. Classical noise
(phenomenological model)

1) =

Ll H(t) = w(t)o/2 p=—i|H(t),p]

0) = |4) Ej(t) (o4 (t)) = e®® (6, (0))  H(t) = /Ot dt’' w(t')
B AVWWWWWV

/‘;Y—« /‘\ﬂ—lk ® o O g

prepare {  measure prepare measure

Average over noise realizations:

(0 0. = (70 (0(0))

av.



Dephasing “decoherence”. Classical noise
(phenomenological model)

(L), = (¢70) (02 (0)) = e 2D (0, 0))

av.

<¢2 (t)>av. — /0 dt’ (t — t’) <5w(t’)5w(0)>av. (Gaussian, stationary)

<5w<t>5w<o>>av.\

} —h—» t
Te
“Markovian limit’ “Non-Markovian limit”
: T, T
/E Te < Tdec. %A c ~ Tdec.
> % _(t/'rdec. )2
~ €
+ N—
q) ~~—"
= o
i } } } —p
Tdec. Te



A better approach?

(1) 0H(t) unknown.
‘ Figure it out!
(2) Environment state unknown.

‘ Measure it! (For a static environment)

(3) U'(¢) too complicated.

‘ Systematic expansion, not always weak-coupling.



A better approach?

(1) 0H(t) unknown.

‘ Figure it out!



Charge vs. (Electron) Spin




Electron vs. Nuclear Spin

‘ Eel. L 20 /'LQB eh

Mag. " gr a3B UB = o
7
pnuc. _ Ko BHN N = eh
Mag 4t a3 2myp,
Elr\l/lua?g.. e ~ 103




Hierarchy of time scales

Ecoul. > Exf,.. > Fite,

Typ I Cal Iya Longer-lived

Long-lived coherence! environment.

el. spin
-

nuc. spin el. spin

Te ™~ Ty < T,

Non-exponential decay (typically)



Good platform for qgquantum
coherence?




Nuclear spins are (almost)
everywhere...

NV centers in diamond

Quantum dots

N@C

60




“Theory of everything” for spins in
the solid state

ST

Hcontact — ?7571(5(@5 -1

3n-S)(n-I)—-S -1

rd

Haip. = vs71

L-1I
Hyr = VSV~ 5



Confined electron




<¢(§rb
<¢§rb
<¢§rb

Interactions: s vs. p

s-state (electron) p-state (hole)

Hcontact |¢grb> 7& 0 < (Z)jrb
Hdip. ‘wgrb> =0 < (Z)Qrb
HLI ‘wgrb> =0 < grb

Hontact Wgrb> =0
Hdip. ’wgrb> # 0
Hyp [$g,,) # 0



Interactions: s vs. p

s-state (electron) p-state (hole)
ue(r)
Zott Uy ()
‘ Zeff ‘
<¢grb Hcontact |¢grb> 7& 0 < grb Hcontact ‘wgrb> =0
<¢§rb Hdip. ‘wgrb> =0 < (Z)Qrb Hdip. ‘wgrb> # 0
<¢§rb HLI ‘¢grb> =0 < grb HLI ’wgrb> # 0

Anything else: NV Center, Nanotubes, graphene,...combination



Interactions: s vs. p

s-state p-state
Zeff
‘ Zeff ‘
Project ont myjg — __§ = L
roject onto J—__2 isz—__§
H;H — ASS . I H;ff — APSZIZ

For 4s, 4p Hydrogen-like atomic orbitals (valence states of Ga, As):

bl (Y

As 5
The two coupling strengths are comparable!
Fischer, WAC, Bulaev, Loss, PRB (2008)



Hyperfine Hamiltonian: Electron

Hoo — @ h = zk: Ar I
Electron Zeeman e/nergy A = Z Ak
k

Coupling to nuclear field

N /
e

fo does not conserve energy for large b

A
‘ Perturbation theory in > <1 b/g*us =3.5T (GaAs)

WAC and Loss, PRB (2004)

S S
h-S :hzsz+% (RTS8~ +h™ST) '1@"
1 1



A better approach?

(1) 0H(t) unknown.
‘ Figure it out!
(2) Environment state unknown.

‘ Measure it! (For a static environment)



Initial Conditions

Fast initialization:

p(0) = ps(0) ® pr(0)
Sufficient condition:  Tinit S 1/A ~ 50 ps

Nuclear Bath:

p1(0) =77



State Narrowing

B

B A

+B
Measurement
or drive

— >/h —> <Sa;>t X €

1wt

(narrowed state)

Theory: WAC and Loss, PRB (2004), Klauser, WAC and Loss, PRB (2006,2008), ...

Experiments: Latta et al., Nature Phys. (2009), Vink et al., Nature Phys. (2009),
Xu et al., Nature (2009), ...



A better approach?

(1) 0H(t) unknown.
‘ Figure it out!
(2) Environment state unknown.

‘ Measure it! (For a static environment)

(3) U'(¢) too complicated.

‘ Systematic expansion, not always weak-coupling.



New approach: A general theory
of coherent quantum dynamics

Relevant

observables @

Von Neumann: 0 = —1 [H, ,0] <Oa>t = I {Op(t)}

All observables

Nakajima-Zwanzig Generalized Master Equation
t

< a> :—szag (Og), ZZ/ dt'Yap(t —t') (Og),
€]

0

H=FHy+V E()zzz(”)() M () =0 (V")

mn
WAC and Loss, PRB (2004); WAC, Fischer and Loss, PRB (2008);
WAC, Fischer and Loss, PRB (2010)



Free-induction decay

Generalized Master Equation, Higher order.
WAC, Fischer, Loss, PRB (2010)




Spin coherence in quantum dots:
How far have we come?

A s> s> B

Petta et al., Science (2005) N
W > Nt ) It n_ﬂh‘- e Wi

FID T LT .
T2 — ].O 1S ﬁ """""" 3[1‘17:11: 0.6F

. l
ST, \,:1571./ 04

=2 -

tme
(Free-induction decay-- no echo) -
- mem
Bluhm et al., Nature Physics (2010) "' .
Rt s
TQCPMG — 200 LS = B
(Dynamical decoupling)
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Scalability: Why electron spins?

Electrons NMR, Charge,
etc....
J12
3/ / / 2 —7“12/7“0 U ~ L ~ L
Toc [ & [ () ~ e e
Exchange is local Dipolar, Coulomb

iInteractions long-ranged



Scaling up: What can we learn from
other implementations”?

Quantum coherence
and dynamics in

; ) uantum coherence in
spin qubits Q

ion traps

fh

\ /

L e e = 8 s 8l e



General Philosophy

Abstract models are excellent for fast progress, well
defined questions...
BUT: too many to choose from.

Physical considerations often show the way to go.

True dynamics/decoherence often more complex than initial
models suggest.



Single ions (*°Ca’)

R. Blatt and D. Wineland, Nature (2008)

encoding:

s)—0) @

d) = 1) =




Sources of dephasing in ion traps

*Global magnetic field fluctuations (slow)

S d
‘ — ‘O> + — |1> (orbital Zeeman)

*Fluctuating global phase reference
(laser stability, also slow)

AMO Physics: Usually assume fast, local noise.



Gaussian dephasing model:
= 5B(t)ZSiif Sr. = (10) (0], = [1) (1];) /2

(SB(£)OB(0)) = (5B e~/
1

4(0)) = —= (]0000...) + |1111...)) (GHZ/Schroedinger's cat)
/3

N qubits



Gaussian dephasing model:
= 5B(t)ZSi2 Sr. = (10) (0], = [1) (1];) /2

(6B(t)3B(0)) = (0B?) e~/
1

’¢(O)> — (‘OOOO > + ‘1111>) (GHZ/Schroedinger's cat)
\ﬁ/—/

N qubits

F(t) = T@OT BN = 5 (1 +exp[26(N,1)]) ~ 1 — (N, 1

e(N,1) —®/ dr(t — 1) (0B(t)0B(0))

(Palma et al., Proc. Roy. Soc. Lond.A (1996))

S

Superdecoherence
Problem for short-term scalability?? T. Monz et al., PRL (2011)



Big questions in physical quantum
information processing

*Quantum simulation: What is the simplest problem
that would see a real advantage?

*Quantum-enhanced precision measurements (are they
practical)? Effects of realistic decoherence?

*Quantum networks: Spin-photon coupling, Swapping
between microwave and optical frequencies.

L ong-range (~cm) distributed entanglement between
electron-spin quantum bits.



Spintronics and Qm. Information
Processing: Joined at the hip

*Fast and accurate single-spin rotation and readout
(gated lateral dots) combined with long memory time.

Materials/Architechtures:
 |[II-V dots: electrons vs. holes? Nanowires vs. vertical/lateral/self-
assembled dots?
* Nuclear-spin free?: Silicon, Carbon Nanotubes, Graphene, NV
Centers in Diamond

*Theory: Controlled theory of spin echoes in a spin bath

*Coherence in dynamic nuclear polarization, diffusion

*Hybrid structures (spin-photon coupling; coupling to
superconductors)



Summary: Electron spins as qubits

Demonstrated:

*Fast two-qubit gates
*Long (potential) coherence times
*Selective single-spin rotations

Still needed:

*Fast high-fidelity single-qubit gates (single-spin rotations)
L ong coherence times (for a single-spin qubit)

*Transfer of information from stationary to flying qubits

L ong-range distributed entanglement



Method 1: Magnus expansion
U(t) — Tt [ dt"H(t) _ o —iH (1)

H(t) = HO@) + HY(t) + H®(¢)

HO (¢ / H(t
g1 — —/ dt2/ dtq [H(t2),




Magnus expansion:
Spin echoes in a dynamic
environment

H=28.Y Al + ByI*
k

“Heavy-hole spin echoes”, with X. Wang

B=05T
N = 2000 nuclei

<Sx(2)>

Magnus (dashed red)
o ] Exact (solid blue)
0.2+ -
03 F
0.4k
_DE 1 1 [ [ [ [ 1 1 1
o 100 200 300 400 S00 600 700 200 900 1000

time (ns)
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