Paul Koenraad Department of Applied Physics Eindhoven University of Technology

> SPINTECH 6 Matsue, Japan

2 August 2011

COBRA Inter-University Research Institute on Communication Technology TU/e

Atomic States Hydrogen

$$H\psi = \frac{\hbar^2 k^2}{2m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) \psi + \frac{1}{\varepsilon_o r} \psi = \varepsilon \psi$$

Rydberg energy

$$\varepsilon_{Ryd} = -\frac{me^4}{8h^2\varepsilon_o^2} = -13.6 \ eV$$

<u>Bohr radius</u>

$$a_0 = \frac{4\pi\varepsilon_0\hbar^2}{me^2} = 0.053 \ nm$$

Hydrogenic Impurity in a Semiconductor

Ground state wavefunction

$$\psi(1s_{1/2}) = 2 / \sqrt{4\pi} (1 / r_B)^{3/2} e^{-r / r_B}$$

Effective Bohr-radius

$$r_B = \frac{\mathcal{E}_r}{m^*} a_0$$

Ground state binding energy

$$\varepsilon = \frac{m^*}{\varepsilon_r^2} \varepsilon_{Ryd}$$

In GaAs $\varepsilon_r = 13$ and $m^* = 0.067$ ground state binding energy $\varepsilon_0 = 5.6 \text{ meV}$ and the effective Bohr radius $r_B = 10 \text{ nm}$

Hydrogenic Atoms in Semiconductors

Questions:

<u>Outline</u>

Introduction
 Analysis of individual donors in GaAs

 Charge manipulation (ionization)
 Electronic characterization
 Configuration manipulation (donor/acceptor)

 Analysis of individual magnetic acceptors in GaAs

 Electronic characterization
 Valence state manipulation
 Valence state manipulation
 Magnetic characterization

<u>Outline</u>

Introduction
Analysis of individual donors in GaAs

Charge manipulation (ionization)
Electronic characterization
Configuration manipulation (donor/acceptor)

Analysis of individual magnetic acceptors in GaAs

Electronic characterization
Valence state manipulation
Magnetic characterization

Conclusions

Assessment at the Atomic Scale

GaAs dot in AlGaAs grown by Ga droplet technique

Grown by T. Mano, Tsukuba, Japan

J.G.Keizer, J.G. et al, APL **96**, 062101 (2010).

Scanning Tunneling Microscopy on Semiconductors

Bulk doped Mn:GaAs

Celebi et al PRL 104, 086404 (2010)

Mn Substitution in a GaAs Surface

D. Kitchen et al, Nature 442, 436 (2006)

<u>Outline</u>

Introduction
 Analysis of individual donors in GaAs

 Charge manipulation (ionization)
 Electronic characterization
 Configuration manipulation (donor/acceptor)

 Analysis of individual magnetic acceptors in GaAs

 Electronic characterization
 Electronic characterization
 Valence state manipulation
 Magnetic characterization

 Conclusions

Low Temperature Imaging

Si Doped GaAs measured at 5 K

Si donors at different depths below the 110 cleavage surface

Low Temperature Imaging

Si Doped GaAs measured at 5 K

Si donors at different depths below the 110 cleavage surface

Single Si donor in GaAs

Ionization process

topography:

K. Teichman et al, PRL **101**, 076103 (2008)

Voltage Dependence

R. M. Feenstra, J.Vac. Sci. Technol B 21, 2080 (2003)

flat band voltage and tip radius are the main fitting parameters

Ionization rings for Mn in InAs

dI/dV map at 1.05 V

dI/dV map at 1.10 V

F. Marczinowski et al, PRB 77, 115318 (2008)

<u>Outline</u>

Introduction
 Analysis of individual donors in GaAs

 Charge manipulation (ionization)
 Electronic characterization
 Configuration manipulation (donor/acceptor)

 Analysis of individual magnetic acceptors in GaAs

 Electronic characterization
 Valence state manipulation
 Magnetic characterization

 Conclusions

Coulomb Profiling with an As-vacancy

STM induced creation of As-vacancy near Mn in GaAs

D. Lee and J. Gupta, NanoLetters 11, 2004 (2011)

Coulomb Profiling with an As-vacancy

As-vacancy at surface is a singly charged donor

D. Lee and J. Gupta, NanoLetters **11**, 2004 (2011)

Coulomb Interaction

K. Teichman et al, submitted for publication

Depth Dependent Binding Energy

Depth Dependent Binding Energy

<u>Outline</u>

Introduction
Analysis of individual donors in GaAs

Charge manipulation (ionization)
Electronic characterization
Configuration manipulation (donor/acceptor)

Analysis of individual magnetic acceptors in GaAs

Electronic characterization
Valence state manipulation
Magnetic characterization

Conclusions

Switching of Si in the Surface Layer

Bond Reconfiguration

Only observed for Si donors in the topmost layer

P. Mooney, Semi. Sci & Technol. 6, B1 (1991)

Si⁺ / Si⁻ - Switching Rate

<u>Outline</u>

Introduction
 Analysis of individual donors in GaAs

 Charge manipulation (ionization)
 Electronic characterization
 Configuration manipulation (donor/acceptor)

 Analysis of individual magnetic acceptors in GaAs

 Electronic characterization
 Valence state manipulation
 Magnetic characterization

✓ Conclusions

Electronic Structure

Manipulation of the Charge State by STM tip

Ionized acceptor

Neutral acceptor

A⁻ and A^o Charge States of Mn

Ionized Mn A⁻Neutral Mn A^o (ion + hole)(V=-0.9 V)(V=+0.7 V)

Contrast is due to Coulomb field

Tunneling to the bound hole (Mn in ~ 3rd sublayer) 110-plane

Luttinger Hamiltonian

 $H_{Lut}(k_x,k_y,k_z)\psi_i + V(r)\psi_i = \varepsilon_i\psi_i$

$$\frac{\text{uttinger Hamiltonian}}{H_{Lut}(k_x, k_y, k_z) = \frac{\hbar^2}{2m_o}} \begin{bmatrix} H_{hh} & c & -b & 0\\ c^+ & H_{lh} & 0 & b\\ -b^+ & 0 & H_{lh} & c\\ 0 & b^+ & c^+ & H_{hh} \end{bmatrix}$$

$$\boldsymbol{\psi}_{i} = \begin{pmatrix} \phi_{1} \cdot |3/2, +3/2 \rangle \\ \phi_{2} \cdot |3/2, +1/2 \rangle \\ \phi_{3} \cdot |3/2, -1/2 \rangle \\ \phi_{4} \cdot |3/2, -3/2 \rangle \end{pmatrix}$$

4-vector representation based on spin-projection

 $H_{hh} = \left(k_x^2 + k_y^2\right)\left(\gamma_1 + \gamma_2\right) + k_z^2\left(\gamma_1 - 2\gamma_2\right)$ $H_{lh} = \left(k_x^2 + k_y^2\right)\left(\gamma_1 - \gamma_2\right) + k_z^2\left(\gamma_1 + 2\gamma_2\right)$ $b = 2\sqrt{3}\gamma_3(k_x - ik_y)k_z$ $c = -\sqrt{3}\left[\gamma_2\left(k_x^2 - k_y^2\right) - 2i\gamma_3k_xk_y\right]$ parameters *In confined systems the light and heavy hole bands are mixed*

$$\gamma_2 = \gamma_3$$
 isotropic dispersion

Modelling of Acceptors

Mn Doped GaAs

Garleff et al PRB **78** 075313 (2008)

Celebi et al PRL 104, 086404 (2010)

Depth dependent contrast

Strained Mn impurities

Effect of Surface relaxation

Ga sublattice shifted by 0.014 Ang in 110 direction (0.25 % of lattice constant)

Celebi et al PRL 104, 086404 (2010)

Mn Contrast

Kitchen et al., Nature **442**, 436 (2006)

surface

C. Celebi et al PRL **104**, 086404 (2010)

J. Garleff et al PRB **78**, 075313 (2008)

T.O. Strandberg et al. PRB **80** 024425 (2009)

Binding Energy Mn Acceptor

P. Mahadevan and A. Zunger APL 85, 2860 (2004)

Shallow versus Deep Impurities

Shallow impurities

- Long range confining potential mostly Coulombic (1/r)
- Effective mass modeling
- Large Bohr-radius, small binding energy
- Examples in GaAs: Si, Zn, Be, Sn

Deep impurities

- Atomic scale confining potential strongly non-Coulombic
- Advanced atomistic modeling
- Strongly localized, large binding energy
- Examples in GaAs: Fe, Cr, Er

Transition Metal Impurities in GaAs

P. Vogl and J.M. Baranowski, Acta Physica Polinica A 67, 133 (1985)

Cr doped GaP

Artificial Atoms in Semiconductors

<u>Outline</u>

Introduction
 Analysis of individual donors in GaAs

 Charge manipulation (ionization)
 Electronic characterization
 Configuration manipulation (donor/acceptor)

 Analysis of individual magnetic acceptors in GaAs

 Electronic characterization
 Electronic characterization
 Magnetic characterization

 Magnetic characterization
 Conclusions

Charge Transfer Level Fe in III/V

Transition Metal Impurities in GaAs

T. Graf, S. Goennenwein, M. Brandt, Phys Status Solidi B 239, 277 (2003)

Manipulation of the Fe valence state

[Fe²⁺]⁻ charged acceptor

[Fe³⁺]⁰ isoelectronic center

Manipulation of Valence State of Fe by STM tip

POSTER Juanita Bocquel (FP-47)

[Fe³⁺]⁰ iso-electronic dopant sp 3d⁵ [Fe²⁺]⁻ ionized acceptor 3d⁶

Artificial Atoms in Semiconductors

<u>Outline</u>

Introduction
 Analysis of individual donors in GaAs

 Charge manipulation (ionization)
 Electronic characterization
 Configuration manipulation (donor/acceptor)

 Analysis of individual magnetic acceptors in GaAs

 Electronic characterization
 Valence state manipulation
 Valence state manipulation
 Magnetic characterization

Magnetic Field Dependence

Tang en Flatté, PRB 72, 161315(R) (2005)

T.O. Strandberg et al. PRB **80** 024425 (2009)

Depth Dependence Mn Contrast

T.O. Strandberg et al. PRB 80 024425 (2009)

Magnetic Field Dependence

Mn acceptor deep below surface

Temp ~ *2K*

Magnetic Field Dependence

Mn acceptor deep below surface

Magnetic anisotropy as function of depth below surface

- Minimal energy
- Low barrier
- High barrier

Spin Excitation of a Single Fe atom in an InSb Top-Surface Layer

Spin Excitation of a Single Fe atom in an InSb Top-Surface Layer

$$H = D\hat{S}_{z}^{2} + E(\hat{S}_{x}^{2} - \hat{S}_{y}^{2})$$

D = 0.75 meV E = 0.5 meV

A.A. Khajetoorians et al, Nature 467, 1084 (2010)

Anisotropic Spin-Interaction for Mn in a GaAs Surface

Spin-Polarized Tunneling on Mn

Schlenhoff et al. APL **97**, 083104 (2010)

out-of-plane magnetization observed on 1.5 ML Fe on W

Atomic resolution with Cr tip on Mn:GaAs

Collaborators

<u>TU/e</u> J. Bocquel, M. Bozkurt, C. Celebi, J. Garleff, j. Keizer, S. Mauger, A. Silov, A.Yakunin, I. Wijnheijmer

<u>Experimental</u> S. Loth, K. Teichmann, M. Wenderoth, R.G. Ulbrich (University of Gottingen, Germany) B. Bryant, N. Curzon, C. Hirjibehedin (UCL, London, UK)

<u>Theory</u> M.E. Flatté, C.E. Prior (University of Iowa, USA) J.M. Tang (University of New Hampshire, USA) A. Monakhov, N. Averkiev (Ioffe-institute, Russia) M. Roy, P. Maksym (University of Leicester, UK)

<u>Growers</u>

W. Van Roy (IMEC-Leuven, Belgium) B. Gallagher, R. Campion, V. Grant, T. Foxon (Nottingham, UK) E. Marega (San Carlos, Brazil) & G. Solomon (Arkansas, USA)

What did Pauli have to say about semiconductor surfaces?

"One shouldn't work on semiconductors, that is a filthy mess; who knows whether any semiconductors exist."

(1900-1958)

What did Pauli have to say about semiconductor surfaces?

"One shouldn't work on semiconductors, that is a filthy mess; who knows whether any semiconductors exist."

Review on single dopant physics and devices, Nature Materials **10**, 91 (2011)

(1900-1958)

What did Pauli have to say about semiconductor surfaces?

"One shouldn't work on semiconductors, that is a filthy mess; who knows whether any semiconductors exist."

Review on single dopant physics and devices, Nature Materials **10**, 91 (2011)

"God made the bulk; the surface was invented by the devil."
What did Pauli have to say about semiconductor surfaces?

"One shouldn't work on semiconductors, that is a filthy mess; who knows whether any semiconductors exist."

Review on single dopant physics and devices, Nature Materials **10**, 91 (2011)

"God made the bulk; the surface layer was invented by the devil."

Welcome in the Netherlands

5-9 August 2012

www.phys.tue.nl/PASPS

