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Number theory for factoring

Purpose
To reduce factoring to order finding

1. Greatest common divisor and
Euclidian method

2. Chinese remainder theorem
Quadratic equation for factoring
4. Order of a modulo L

w

The inventor

Peter Shor

Euclidian method

An efficient method for
finding the gcd

Example

494 =133x3+95
133=95x1+38

gcd(494, 133) =19 ~ 95=38x2+19
Filling the floor of a rectangular 38=19x2
room with square tiles 494 o5
133
38

19

Greatest common divisor

Definition
The largest integer which is a divisor of two
integers a and b is called “greatest common
divisor of a and b”, and denoted as

gcd(a,b)
If gcd(a, b) is equal to 1, it is said that “a and b
are co-prime”
Example

gcd(9,6) =3 gcd(5,3) =1

Chinese remainder theorem

(Below n;, ny, s, t, L ... are all positive integers)

Let n, and n, be co-prime, i.e.,
ged(n;,n,) =1

p and g are the remainders of n; and n,,

respectively, i.e.,

0<p<n-1
0<g<n,-1
Then there exists a unique s (1 < s <n,n,) that
satisfies s=p (modn,)
s=q (modn,)




Chinese remainder theorem

Proof of unigueness
Suppose there exists t (1 <t<n;n,, t<s) that

o
satisfies t=p (modn,) ged(9,15) =1
B d 45=0 (mod 9)
t=q (modn,)  45_ g (mod 15)
Then

450 (mod 135)

s—t=0 (modn,) s—t=0 (modnn,)

s—t=0 (modn,)
ng(nynz) =1

This means s -t > n, n,, which contradicts
the assumption 1<t<s<n;n,

Quadratic equation for factoring

Consider the quadratic equation
x?=1 (modL) (1)
Here L = n,n, with gcd(n,, n,) =1
Then there exist nontrivial solutions such that
x=xs (modL)
Here sis in the range 1 <s<L -1, and the gcd of
L and s £ 1 gives a nontrivial factor of L

Trivial solutions

Thus 1, L -1, L are excluded as
x=%1 (mOd L) candidates for nontrivial solutions

Quadratic equation for factoring

Proof (cont'd)

Therefore,
(s+1)(s-1)=0 (modL)
On the other hand,
O<s-1<s+1l<L 1<s<L-1

Hence the gcd of L and s + 1 is a nontrivial factor
of L, and much the same argument holds for

s=-1 (modn,)
s=1 (modn,) (Q.E.D)

Chinese remainder theorem

Proof of existence

There are n;n, possible pairs of p and ¢, and
that s (1 <s<n;n,) is unique
Thus there must exist s for any pair of p and q

(QE.D)

Example

n=3n,=5

s|1|2|3/4|5|6|7|8]9|10/11/12/13|14|15
pj1{2(0}1{2|0|1|2|0|1|2|0|12
11234011234/ 0

Quadratic equation for factoring

Proof

Chinese remainder theorem assures there
exists s (1 <s <L - 1) that satisfies

s=1 (modn,) s=1:>{551("‘°d"1)
s=1 (modn,)

=-1 (modn,) S:L_l:{SE—l (modn,)

- . . s=-1 (modn,)
This is a nontrivial solution oL [5=0 (madn)
to Eg. (1), because = =0 (modn,)

s*-1=0 (modn,)

" s2-1=0 (modL)
§°-1=0 (modn,)

ged(ng,n;) =1

Quadratic equation for factoring

Example
n=3n,=5 Trivial solutions
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g8 2 s Mo 1]2]3]4/ofW 2|3 o]
4=1 (mod3) 11=-1 (mod3)
{45—1 (mod5) {1151 (mod5)

ged(15, 3)=3 _, Jocdas 10)=5
ged(15, 5) =5 ged(15, 12) =3




Order of a modulo L

Definition
The least positive integer r that satisfies
a"=1 (modlL)
aisintherange0<a<L -1, and co-prime to L
Solving Eq. (1)
Find r, and if r is even, set
s=a"?(modL)

If we are lucky, this is a nontrivial solution to
Eq. (1), and we can factor L!

x> =1 (modL)

Order of a modulo L =21
Factoring 21

a r a2+l gcd w/ 21

Odd r
124, 126 Trivial solution

1330, 1332

Odd r

17 4912, 4914 19,21 | Trivial solution
19 6 6858, 6860 3,7

3
6
2
6 999, 1001
6
2
3
6

Reduction to order finding

Now we can identify “ay mod L” as “permutation”
7z(y) < ay (modL)
For instance,
7*(y) < a(a(ay)) (modL)
< a’y (modL)

Thus “finding the order of a mod L” is equivalent to
“finding the order of r(1)"

a'=1l(modL) = 72" (1) =1

Order of a modulo L =15

Factoring 15

a r a’z+1 ged w/ 15

2 | 4 3,5 3,5 |2'=16=1

4 | 2 3,5 3,5 |4°=16=1

7| 4 48, 50 3,5 |7'=(497=4°=1
8 | 4 63, 65 3,5 8'=(-7)"=1

1| 2 10, 15 53 |[11=(-4)’=1

13| 4 168, 170 3,5 13*=(-2)* =1

We already know “14” yields a trivial solution, so,
may well set the range ofaas 1<a<14

“ay modulo L” is a permutation

Define z(y) as ay (mod L)
Example ged(L,a) =1
L=15a=7

y 0/1|2|3|4|5|6|7|8|9/10(11|12|13|14
z(y) | 0|7 |14| 6 (13| 5|12| 4 (113 (10{ 2|9 |1 |8

7x0 (mod 15)=0
7x1 (mod 15)=7
7x2 (mod 15)=14
7x3 (mod 15)=6

11x0 (mod 15)=0
11x1 (mod 15)=11
11x2 (mod 15)=7
11x3 (mod 15)=3

y |0]1]2|3|4|5|6|7(8|9|10(11/12|13|14
141016 |2 |13/9|5| 1|12/ 8 | 4
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Order of a modulo L

Example
L=15a=7

y 0235689101112

7)) | o Bll14] 6 PR 5 (12 11] 3102 ] o [EW 8]
[ 5] [ 4]
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(1)
742-1=48 — gcd(15, 48)=3
7%241=50 — gcd(15, 50)=5

Succeed!




Order of a modulo L

Example
L=15a=11

y O e 2 | 3 5|6|7 1011|1213 |14
z(y) | O & 7 | 3 |14|10| 6|2 |13| 9 |5 |1 |12|8 |4

(1)
11%2-1=10 — gcd(15, 10)=5
112 41=12 — gcd(15, 12)=3
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Succeed!

Flowchart
—>| Choose a randomly | l<a<l-1

+ NO
YES

| Find r of a mod L |

;

NO

i

YES
| Compute ged(L, a”2+1) |

NO +
YES

| Factorization done!!

!

Remaining issues

Now is the time to answer those questions!

= The measurement does not give us r itself,
then how to obtain r out of the
measurement result?

= What if r does not divide N?
= How to construct the I1; gate?

= If it remains a black box, how can the
algorithm be useful?

Factoring algorithm

The algorithm fails when L is ...
1. even

2. aprime number
3. aprime power

X
S

Those can be checked efficiently by classical methods
before we run the algorithm

Order finding for factoring
L il o I o I o P

2

I

1)) = x| @)
=|x)[a*(modL))
Nothing changes...

We have only to replace z(y)
by ay (mod L) withy =1

Remaining issues

Now is the time to answer those questions!

= The measurement does not give us r itself,
then how to obtain r out of the
measurement result?

= What if r does not divide N?
= How to construct the I1, gate?

= If it remains a black box, how can the
algorithm be useful?




Continued fractions algorithm

Split Invert
=§ =2+E =2+1
13 13 B
:2+% :2+i1
2+— 2+
5 3
=2+ 1 =2+ 1
1 1
2+—2 2+—1
1+— 1+
3
2
1
=2+ =[2,211,2]
2+ 1
1+—1
1+=
2

Continued fractions algorithm

Given the continued fraction expansion
a=[aga, . a,]
Then the nth convergent of « is given by

Pr=28,Pp4q+ Prs . (pfzﬁqu) = (Orl)
with
Oy =8,0n1 0z (p1,04)=(10)
-2 | -1 0 1 2 3 4
a, | - | - |22 |1|1]|2
P, 2| 5|7 12|31
g, | 1|0 | 1|2 |3 |5 |13

It can be shown that p, and g, are co-prime

Case study: Factoring 39

Step 1: Choose random a coprime to L
a=7

Step 2: Find r

r=12 Continued fractions algorithm

after measurement
Step 3: Compute ged(L, a”2+1)

7%/2_1=24 (mod 39) — gcd(39, 24)=3
722 41=26 (mod 39) — gcd(39, 26) =13

Contmued fractions algorithm

Po_pp_2_
o {p./q,} produce /
B _221= 2+1 5_ 25 betterefmd petter /
o 2 12 ; approximations of a /)
Pe_ppam=2eti=lo23
4 2+= 3
L

LY 2+ :B:“
* 31
"“—[22112]-—_a 2384615

2

1

Continued fractions algorithm

Suppose k/r is a rational number such that
1
2r?

Then k/r is a convergent of the continued
fraction for ¢

k
PR
r

The inequality holds if ¢ is an approximation of
kir accurate to 2l + 1 bits

L
r(p_

1 1 i=flog,L] @*<L<2)
2T 2rt g p2')2 217 > 212

r
aimk/r| 1Y

e2

Determining r after measurement
) 7
— |4)=
rk:o r
Example
3413 1

L=39 — =0+
8192 2 1
a=7 1ok * 1
r=12 —r— 2% 1
N r 2+ 1
I=[log,L]|=6 170+

N =27 =8192 -[0,2,2,2170,4]

k=5
Nk 8192-5
A=3413 =

=34133




Determining r after measurement

n|-2/-1101|2]|3 4 5
a,|-|-10]2]2]2] 170 4
Py 0|1]2|5]| 852 | 3413
g, | 1 1|2 |5]12| 2045 | 8192

p, 1 p,_2 p,_5 p,_ 852 p; 3413

9 2 0, 5 g 12 q, 2045 q, 8192

Candidates for k/r r<L=39
Compute a% (modL)

Know that g, = 12 is the order

M, x)|1) =[ x)| a* (mod L))
X = 2", + 272X e 2%+ X

ax (mod L) — aZ"’1><ﬂ+2"’Z Xpg+ee 2% +Xo (mod L)
=[a?" (mod L)J*[a®" (mod L)+ ---[a (mod L)]*

Controlled-U gates

2k

a ya® (mod L)>

<
~

Case study: Factoring 15

Step 1: Choose random a coprime to L

Sy WAl =i Rl Concrete construction of IT gate
due to Vandersypen et al. will be

given in the following slides
Step 3: Compute ged(L, a"2+1)

742 _1=48 — gcd(15, 48)=3
7%24+1=50 — ged(15, 50)=5

Remaining issues

Now fs the time to answer those questions!

= The measurement does not give us r itself,
then how to obtain r out of the
measurement result?

= What if r does not divide N?

= How to construct the I, gate?

= If it remains a black box, how can the
algorithm be useful?

Modular exponentiation

We must at least calculate a* (modL) classically
by repeated squaring (azm)z _

The circuit is constructed without knowing
the order itself

Finding r of a modulo 15

a”|y)= ‘ ya® (mod L)>

a|a|a|r %,

2 4 1 4 %

4 1 1 2 X, .

7141114 0 —1 T o o L
8| 4|1 4 8 T a ™ aZ ] a4 —
11| 1 1 2 11— I 1 —
13| 4 |1 | 4 Only needed when  Trivial

a=2,7,8,13

In reality, if r = 2k, a quantum computer is not
necessary (Know r during repeated squaring)




Modular exponentiation

Example:a=7

a (mod 15)

(a-1)+1 (mod 15)
(4-1+2-1)+1 (mod 15)

y=SY3+4yz +2y1+y0

0——0

:‘yayZy1yo> E a E ‘0111> — O 4@* 1
|oooy) —] — 0o—a—1
l1—1

For other a, the gate is constructed
in a similar fashion

Quantum circuit for factoring 15

QFT

\0>
j0)H] : (A

HIs
0)-{H] (H A
10)
0)
0)
[2)

Modular exponentiation

Thank you for your attention!!

Modular exponentiation

Example: a=7 (and 2, 8, 13)

a’y (mod 15)
= 4x(8y;+4y,+2y,+Y,) (mod 15) a2—4 (mod 15)
= 32y,+16y,+8y, +4y, (mod 15)  32=2 (mod 15)
= 2y,+Y,+8y,+4y, (mod 15) 16 =1 (mod 15)
= 8y, +4y,+2y,+Yy, (mod 15)

Y3 A
Y2 Yo
\a Y3
Yo — Y,

Vaynve) = @2 = Ivodeys) =

Where are we now?

Climbing Mt. Quantum Computatlon‘ A,
@
»rVy A

\
Scalable guantl:m Theory of fault
omputer tolerant QC
Decoherence --__T____
How can we go
beyond?

We are still at the foot of the mountain...




