Shor's Factoring Algorithm

School on Quantum Computing @Yagami Day 2, Lesson 2 10:30-11:30, March 23, 2005 Eisuke Abe

Department of Applied Physics and Physico-Informatics, and CREST-JST, Keio University

Number theory for factoring

Purpose

To reduce factoring to order finding

- Greatest common divisor and Euclidian method
- 2. Chinese remainder theorem
- 3. Quadratic equation for factoring
- 4. Order of a modulo L

Greatest common divisor

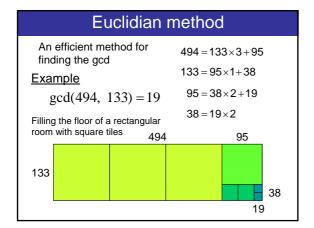
Definition

The largest integer which is a divisor of two integers a and b is called "greatest common divisor of a and b", and denoted as

If $\gcd(a,b)$ is equal to 1, it is said that "a and b are co-prime"

Example

$$gcd(9,6) = 3$$
 $gcd(5,3) = 1$



Chinese remainder theorem

(Below n_1 , n_2 , s, t, L ... are all positive integers)

Let n_1 and n_2 be co-prime, i.e.,

$$\gcd(n_1, n_2) = 1$$

p and q are the remainders of n_1 and n_2 , respectively, *i.e.*,

$$0 \le p \le n_1 - 1$$

$$0 \le q \le n_2 - 1$$

Then there *exists* a *unique* s $(1 \le s \le n_1 n_2)$ that satisfies

 $s \equiv p \pmod{n_1}$

 $s \equiv q \pmod{n_2}$

Chinese remainder theorem

Proof of uniqueness

Suppose there exists t ($1 \le t \le n_1 n_2$, t < s) that satisfies

 $gcd(9,15) \neq 1$ $t \equiv p \pmod{n_1}$ $45 \equiv 0 \pmod{9}$ $t \equiv q \pmod{n_2}$

Then

 $45 \equiv 0 \pmod{15}$ $45 \neq 0 \pmod{135}$

 $s - t \equiv 0 \pmod{n_1}$ $\Rightarrow s-t \equiv 0 \pmod{n_1 n_2}$ $s-t \equiv 0 \pmod{n_2}$ $\gcd(n_1, n_2) = 1$

This means $s - t \ge n_1 n_2$, which contradicts the assumption $1 \le i < s \le n_1 n_2$

Chinese remainder theorem

Proof of existence

There are n_1n_2 possible pairs of p and q, and that $s (1 \le s \le n_1 n_2)$ is unique

Thus there must exist s for any pair of p and q

(Q.E.D)

Example

$$n_1 = 3, n_2 = 5$$

S	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
p	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0
q	1	2	3	4	0	1	2	3	4	0	1	2	3	4	0

Quadratic equation for factoring

Consider the quadratic equation

$$x^2 \equiv 1 \pmod{L} \qquad \dots (1)$$

Here $L = n_1 n_2$ with $gcd(n_1, n_2) = 1$

Then there exist *nontrivial solutions* such that

$$x \equiv \pm s \pmod{L}$$

Here s is in the range 1 < s < L - 1, and the gcd of L and $s \pm 1$ gives a nontrivial factor of L

Trivial solutions

$$x=\pm 1 \pmod L \quad \begin{array}{ll} \text{Thus } 1, L-1, L \text{ are excluded as} \\ \text{candidates for nontrivial solutions} \end{array}$$

Quadratic equation for factoring

Proof

Chinese remainder theorem assures there exists s (1 < s < L – 1) that satisfies

$$s \equiv 1 \pmod{n_1}$$
$$s \equiv -1 \pmod{n_2}$$

This is a nontrivial solution

 $-1 \Longrightarrow \begin{cases} s \equiv -1 \pmod{n_1} \end{cases}$ $\int s \equiv -1 \pmod{n_2}$ $s \equiv 0 \pmod{n_1}$ $s \equiv 0 \pmod{n_2}$

 $s \equiv 1 \pmod{n_1}$

 $\equiv 1 \pmod{n_2}$

to Eq. (1), because
$$s^2 - 1 \equiv 0 \pmod{n_1}$$

 $s^2 - 1 \equiv 0 \pmod{n_2}$

 $\Rightarrow s^2 - 1 \equiv 0 \pmod{L}$

 $\gcd(n_1, n_2) = 1$

Quadratic equation for factoring

Proof (cont'd)

Therefore,

$$(s+1)(s-1) \equiv 0 \pmod{L}$$

On the other hand,

$$0 < s - 1 < s + 1 < L$$
 $1 < s < L - 1$

Hence the gcd of L and $s \pm 1$ is a nontrivial factor of L, and much the same argument holds for

$$s \equiv -1 \pmod{n_1}$$

$$s \equiv 1 \pmod{n_2} \tag{Q.E.D}$$

Quadratic equation for factoring

Example

$$n_1 = 3, n_2 = 5$$

Nontrivial solutions

$$\begin{cases} 4 \equiv 1 \pmod{3} \\ 4 \equiv -1 \pmod{5} \end{cases} \Rightarrow \begin{cases} 11 \equiv -1 \pmod{3} \\ 11 \equiv 1 \pmod{5} \end{cases}$$

$$\Rightarrow \begin{cases} \gcd(15, 3) = 3 \\ \gcd(15, 5) = 5 \end{cases} \Rightarrow \begin{cases} \gcd(15, 10) = 5 \\ \gcd(15, 12) = 3 \end{cases}$$

Order of a modulo L

Definition

The least positive integer r that satisfies

$$a^r \equiv 1 \pmod{L}$$

a is in the range $0 \le a \le L - 1$, and co-prime to L

Solving Eq. (1)

$$x^2 \equiv 1 \pmod{L}$$

Find r, and if r is even, set

$$s \equiv a^{r/2} \pmod{L}$$

If we are lucky, this is a nontrivial solution to Eq. (1), and we can factor L!

Order of a modulo L = 15

Factoring 15

а	r	$a^{r/2} \pm 1$	gcd w/ 15	
2	4	3, 5	3, 5	$2^4 = 16 \equiv 1$
4	2	3, 5	3, 5	$4^2 = 16 \equiv 1$
7	4	48, 50	3, 5	$7^4 = (49)^2 \equiv 4^2 \equiv 1$
8	4	63, 65	3, 5	$8^4 \equiv (-7)^4 \equiv 1$
11	2	10, 15	5, 3	$11^2 \equiv (-4)^2 \equiv 1$
13	4	168, 170	3, 5	$13^4 \equiv (-2)^4 \equiv 1$

We already know "14" yields a trivial solution, so, may well set the range of a as 1 < a < 14

Order of a modulo L = 21

Factorina 21

,,,	OHH	121			
	а	r	$a^{r/2} \pm 1$	gcd w/ 21	
	2	6	7, 9	7, 3	
	4	3			Odd r
	5	6	124, 126	19, 21	Trivial solution
	8	2	7, 9	7, 3	
	10	6	999, 1001	3, 7	
	11	6	1330, 1332	7, 3	
	13	2	12, 14	3, 7	
	16	3			Odd r
	17	6	4912, 4914	19, 21	Trivial solution
	19	6	6858, 6860	3, 7	

"ay modulo L" is a permutation

Define $\pi(y)$ **as** $ay \pmod{L}$

Example

Example $gcd(L, a) = 1$															
L = 15, a = 7															
y 0 1 2 3 4 5 6 7 8 9 10 11 12 13 c													14		
$\pi(y)$	0	7	14	6	13	5	12	4	11	3	10	2	9	1	8
$7\times0 \pmod{15} = 0$ $11\times0 \pmod{15}$ $7\times1 \pmod{15} = 7$ $11\times1 \pmod{15} = 7$															
	7	$11 \times 1 \pmod{15} = 11$													

 $7 \times 2 \pmod{15} = 14$ $11 \times 2 \pmod{15} = 7$ $7 \times 3 \pmod{15} = 6$ $11 \times 3 \pmod{15} = 3$ L = 15, a = 110 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14

3 | 14 | 10 | 6 | 2 | 13 | 9 | 5 | 1 | 12 | 8 | 4

Reduction to order finding

Now we can identify " $ay \mod L$ " as "permutation"

$$\pi(y) \Leftrightarrow ay \pmod{L}$$

For instance,

$$\pi^3(y) \Leftrightarrow a(a(ay)) \pmod{L}$$

 $\Leftrightarrow a^3 y \pmod{L}$

Thus "finding the order of $a \mod L$ " is equivalent to "finding the order of $\pi(1)$ "

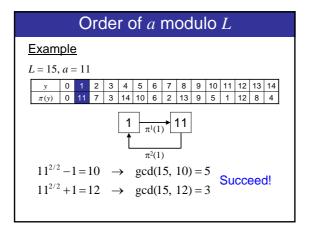
$$a^r \equiv 1 \pmod{L} \Leftrightarrow \pi^r(1) = 1$$

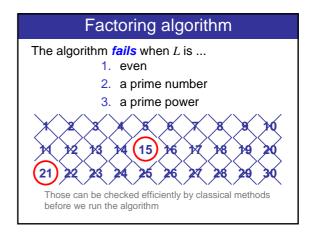
Order of a modulo L

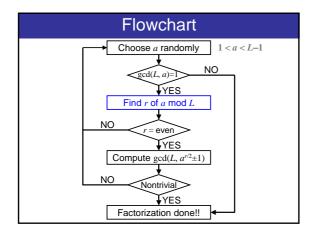
Example L = 15, a = 7

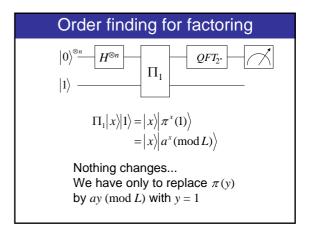
$$7^{4/2} - 1 = 48 \rightarrow \gcd(15, 48) = 3$$

 $7^{4/2} + 1 = 50 \rightarrow \gcd(15, 50) = 5$ Succeed!









Remaining issues

Now is the time to answer those questions!

- The measurement does not give us r itself, then how to obtain r out of the measurement result?
- What if r does not divide N?
- How to construct the Π₁ gate?
- If it remains a black box, how can the algorithm be useful?

Remaining issues

Now is the time to answer those questions!

- The measurement does not give us r itself, then how to obtain r out of the measurement result?
- What if r does not divide N?
- How to construct the Π_1 gate?
- If it remains a black box, how can the algorithm be useful?

Continued fractions algorithm

$$\alpha = \frac{31}{13} = 2 + \frac{5}{13} = 2 + \frac{1}{\frac{13}{3}}$$

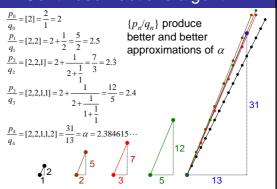
$$= 2 + \frac{1}{2 + \frac{3}{5}} = 2 + \frac{1}{\frac{1}{\frac{3}{3}}}$$

$$= 2 + \frac{1}{2 + \frac{1}{\frac{1}{3}}} = 2 + \frac{1}{2 + \frac{1}{\frac{1}{\frac{1}{3}}}}$$

$$= 2 + \frac{1}{2 + \frac{1}{1 + \frac{1}{\frac{3}{2}}}} = 2 + \frac{1}{2 + \frac{1}{1 + \frac{1}{\frac{3}{2}}}}$$

$$= 2 + \frac{1}{2 + \frac{1}{1 + \frac{1}{1 + \frac{1}{2}}}} = [2, 2, 1, 1, 2]$$

Continued fractions algorithm



Continued fractions algorithm

Given the continued fraction expansion

$$\alpha = [a_0, a_1, \cdots, a_m]$$

Then the nth convergent of α is given by

$$p_{n} = a_{n}p_{n-1} + p_{n-2}$$

$$q_{n} = a_{n}q_{n-1} + q_{n-2}$$
with
$$(p_{-2}, q_{-2}) = (0,1)$$

$$(p_{-1}, q_{-1}) = (1,0)$$

$$n - 2 - 1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4$$

$$a_{n} - - \quad 2 \quad 2 \quad 1 \quad 1 \quad 2$$

It can be shown that p_n and q_n are co-prime

Continued fractions algorithm

Suppose k/r is a rational number such that

$$\left| \frac{k}{r} - \varphi \right| \le \frac{1}{2r^2}$$

Then k/r is a convergent of the continued fraction for φ

The inequality holds if φ is an approximation of k/r accurate to 2l + 1 bits

$$\left| \frac{k}{r} - \varphi \right| \le \frac{1}{2^{2l+1}} \le \frac{1}{2r^2} \qquad l \equiv \lceil \log_2 L \rceil \quad (2^{l-1} < L \le 2^l)$$

$$2^{2l+1} = 2(2^l)^2 \ge 2L^2 \ge 2r^2$$

Case study: Factoring 39

Step 1: Choose random a coprime to L

a = 7

Step 2: Find r

Continued fractions algorithm r = 12

after measurement

Step 3: Compute $gcd(L, a^{r/2}\pm 1)$

$$7^{12/2} - 1 \equiv 24 \pmod{39} \rightarrow \gcd(39, 24) = 3$$

 $7^{12/2} + 1 \equiv 26 \pmod{39} \rightarrow \gcd(39, 26) = 13$

Determining *r* after measurement

$$\approx \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{2\pi i m k / r} \left| \frac{N}{r} k \right\rangle \quad \xrightarrow{\left[\nearrow \right]} \quad \left| \lambda \right\rangle \approx \left| \frac{N}{r} k \right\rangle$$

Example Page 1

$$L = 39$$

$$\frac{\lambda}{N} \approx \frac{k}{r}$$

L = 39

$$a = 7$$

 $r = 12$
 $l = \lceil \log_2 L \rceil = 6$
 $N = 2^{2l+1} = 8192$

$$\frac{3413}{8192} = 0 + \frac{1}{2 + \frac{1}{2 + \frac{1}{170 + \frac{1}{4}}}}$$

$$= [0,2,2,2,170,4]$$

$$N = 2^{2l+1} = 8192$$

$$=[0,2,2,2,170,4]$$

$$k = 5$$
 $\frac{Nk}{2412} = \frac{81}{k}$

Determining r after measurement

	n	-2	-1	0	1	2	3	4	5
ſ	a_n	-	-	0	2	2	2	170	4
	p_n	0	1	0	1	2	5	852	3413
ſ	q_{n}	1	0	1	2	5	12	2045	8192

$$\frac{p_1}{q_1} = \frac{1}{2} \quad \frac{p_2}{q_2} = \frac{2}{5} \quad \frac{p_3}{q_3} = \frac{5}{12} \quad \frac{p_4}{q_4} = \frac{852}{2045} \quad \frac{p_5}{q_5} = \frac{3413}{8192}$$

Candidates for k/r

 $r \le L = 39$

Compute $a^{q_n} \pmod{L}$

Know that $q_3 = 12$ is the order

Remaining issues

Now is the time to answer those questions!

- The measurement does not give us *r* itself, then how to obtain r out of the measurement result?
- What if *r* does not divide *N*?
- How to construct the Π₁ gate?
- If it remains a black box, how can the algorithm be useful?

Π_1 gate

$$\Pi_1 |x\rangle |1\rangle = |x\rangle |a^x \pmod{L}\rangle$$

$$x = 2^{n-1}x_n + 2^{n-2}x_{n-1} + \dots + 2x_1 + x_0$$

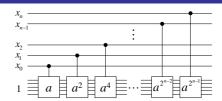
$$a^{x} (\operatorname{mod} L) = a^{2^{n-1} x_{n} + 2^{n-2} x_{n-1} + \cdots 2 x_{1} + x_{0}} (\operatorname{mod} L)$$

$$= [a^{2^{n-1}} (\operatorname{mod} L)]^{x_{n}} [a^{2^{n-2}} (\operatorname{mod} L)]^{x_{n-1}} \cdots [a \ (\operatorname{mod} L)]^{x_{0}}$$

Controlled-U gates

$$|y\rangle \equiv a^{2^k} \equiv |ya^{2^k}(\text{mod }L)\rangle$$

Modular exponentiation



We must at least calculate $a^{2^k} \pmod{L}$ classically by repeated squaring

The circuit is constructed without knowing the order itself

Case study: Factoring 15

Step 1: Choose random a coprime to L

a = 7

Step 2: Find r

r = 4

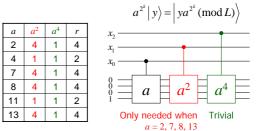
Concrete construction of Π gate due to Vandersypen et al. will be given in the following slides

Step 3: Compute $gcd(L, a^{r/2}\pm 1)$

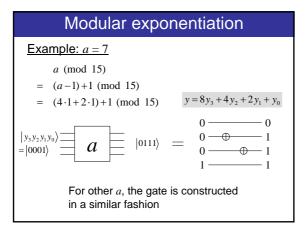
$$7^{4/2} - 1 = 48 \rightarrow \gcd(15, 48) = 3$$

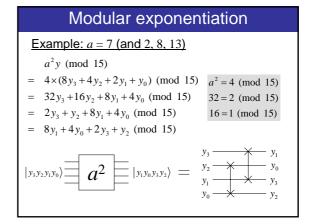
$$7^{4/2} + 1 = 50 \rightarrow \gcd(15, 50) = 5$$

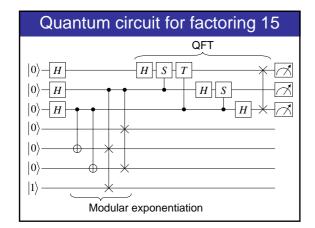
Finding r of a modulo 15

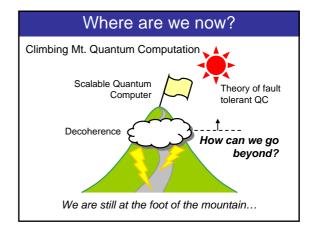


In reality, if $r = 2^k$, a quantum computer is not necessary (Know *r* during repeated squaring)









Thank you for your attention!!