Fault tolerant quantum computation

Quantum error correcting code: The 7-qubit (Steane) code

Fault tolerance

- Assumptions used so far:
- No errors when storing qubits
 - No errors when processing qubits
- In reality:
 - Logic operations may be faulty (encoding, syndrome measurement, etc)
 - Errors might propagate during logic operations
- What we need:
 - Syndrome measurement; and
 - a universal set of quantum gates on encoded qubits without unacceptable error propagation
 - A code that can correct more than one error in the code block

Propagation of errors

Quantum error code to correct many errors

- Quantum error correcting code [[*n*, *k*, 2*t*+1]]
 - Uncorrectable if t+1 independent errors (each with probability ε) occur before error correction
 - Probability $\epsilon^{t+1} \ll \epsilon$; but
- Longer codes require longer steps in syndrome measurement
 - Uncorrectable errors accumulate before they can be corrected!
- Oncatenated code

- Concatenated once: 7² blocks
 - Probability of failure in the sub-block: ε²

 - Total probability of failure: (ε²)²
- L levels of concatenation: 7^L blocks

fails if two or more sub-blocks contain errors: (7)

$$p_{L+1} \approx {\binom{l}{2}} p_L^2 + \dots = 21 p_L^2 + \dots$$

• Threshold value: $p_0 = 1/21$

- Relate gate errors (ϵ_{qate}) and storage error ($\varepsilon_{\text{storage}}$) to p_0
 - Assuming error correction after every CNOT gate

Threshold error rates

 $\epsilon_{gate}{\sim}~6{\cdot}10^{\text{-4}}$

 $\epsilon_{storage}{\sim}~6{\cdot}10^{\text{--}4}$

Shor's algorithm?

of failure: $(\varepsilon^2)^L$

- Factorize a 130-digit (432-bit) number
 - A few months by a classical computer
 - Shor's algorithm
 - Requirements
 - 5×432 qubits
 - 38×(432)³ \sim 3×10⁹ Toffoli gates
 - Gate error < 10-9 per Toffoli gate Storage error < 10⁻¹² per gate operation time
 - Can be achieved by
 - 3 levels of concatenation of 7-qubit Steane code
 - Individual error rates ϵ_{gate} J 10⁻⁶
 - \bullet Total number of qubits $\sim 10^6$
 - including additional ancillary qubits to implement gates fault-tolerantly