

Classical linear codes: Generator matrix

- Linear code C: [n,k] code
 - Encoding *k* bits of information into an *n* bit code space
 - Described by n×k generator matrix G
 Entries ∈ Z₂ ={0, 1}
 - *k*-bit message $x \rightarrow Gx$
- Advantage of linear code
 - Compact specification
 - [*n*,*k*]: *kn* bits of general matrix
 - General encoding requires n2^k bits
 → Exponential saving

When error correction fails

- If $He_1 = He_2$ for $e_1 \neq e_2$ (weight $\leq t$)
 - Same syndrome for different errors
 - When e_1 occurs: $v \rightarrow v + e_1$
 - Faulty error recovery: apply e₂
 - $v \rightarrow v {}^{+}e_{1} {}^{+}e_{2} \neq v$ • Message after error recovery
 - Wessage after error rec $H(v+e_1+e_2) = 0$
 - $\Rightarrow e_1 + e_2 \in C$ (code subspace)
 - Weight of $e_1 + e_2 \le 2 t$
 - If distance of the code C, d(C) = 2t +1, then e₁+e₂ the code cannot be in C
 → He₁ ≠ He₂
- \rightarrow Code C with distance d = 2t+1 can correct errors with weight $\leq t$

CSS (Calderbank-Shor-Steane) code – Quantum error correcting code

Logic operations on encoded qubits

Universal quantum gates

- 1. Single qubit gates + C-NOT (exact)
- 2. Hadamard + phase (S) + C-NOT + $\pi/8$ gates (*T*)

- Approximate, since the set of unitary operations is continuous
- Error: $E(U,V) \equiv \max_{|\psi\rangle} ||(U-V)|\psi\rangle|| < \varepsilon$
 - *U*: Target unitary operator
 - V: Unitary operator implemented

Construction of Toffoli gate • Using Hadamard, Phase, C-NOT, $\pi/8$ gates (Universal gate set) = -H + T + T + T + T + T