For each new class of superconductors that is discovered, a handful of critical experiments must be performed to pin down the mechanism of superconductivity. One such measurement is of the ‘isotope effect’, the change in T_c (the transition temperature to the superconducting state) as the mass M of the atomic constituents is changed. Katsumi Tanigaki and co-workers have now succeeded in measuring the superconducting isotope effect and thus determining the mechanism of superconductivity in a barium-doped silicon clathrate superconductor, Ba$_8$Si$_{46}$. This superconductor is unusual in that the structure is dominated by strong covalent bonds between silicon atoms, rather than the metallic bonding that is more typical of traditional superconductors. As such, the silicon clathrates are members of an exclusive club of covalent metals, whose other members include the well-known high-temperature copper oxide superconductors, MgB$_2$, and the alkali-doped fullerenes. The measurements conducted by Tanigaki and colleagues reveal that superconductivity in Ba$_8$Si$_{46}$ is of the classic kind, arising from the so-called electron–phonon interaction. Superconductors with strong covalent bonding are unusual, so the insights gained here are a valuable addition to our knowledge of covalent metals.

The physical origin of electron–phonon-mediated superconductivity is subtle, but we can approach it by means of an analogy between interacting electrons and human relations. First, consider a woman hiking through a large open field; there may be other hikers around, but they do not affect her motion. The hiker represents the free-electron model, which treats every conduction electron in a metal as unaffected by the surrounding electrons. Now consider the same person trying to jostle her way through a crowded room. The harried walker in the crowded room better represents an electron in a real metal. When all of the random jostles from neighbouring electrons are added up, the net result is simply that the electron moves with an effective mass that is different from the free-electron mass. This way of modelling the interactions as an effective mass works best when the electrons are disorganized, so that the jostles can be averaged together. The situation would be quite different if the crowd was better organized.

As the temperature of a metal drops, the free-energy advantage of disorder is reduced, so the electrons can organize into a collective wavefunction that has a higher degree of order than does our milling crowd. Superconductivity is a form of electron organization that is induced by an attractive interaction between electrons. Although electrons, being of like charge, tend to repel each other, the sea of positive ions in which they move can create a net attractive interaction between them. As an electron moves through the lattice, it attracts the slow and heavy positive ions towards it. However, the fast and fleeting electron soon moves on, leaving the slow ions still moving towards where the electron once was. This transient accumulation of positive charge, caused by a vibration of the lattice (or ‘phonon’), can attract a second electron to the wake of the first. The positively charged lattice of ions thereby mediates an effective attraction between electrons (Fig. 1).

If this phonon-mediated attraction is strong enough, the electrons in the metal will organize themselves, at a sufficiently low temperature, into a sea of electron pairs. On a dance floor, every human pair feels the air of romance, while every dancer in a pair has eyes only for his or her mate. Each pair can glide through the room seemingly oblivious to their surroundings. Similarly, the electron pairs in a superconductor can glide through the metal without impediment. The collective superconducting electron pair is the superconducting state.

Figure 1 Electron organization in superconductivity. The leftward moving electron is attracted to the transient accumulation of positive charge that remains in the wake of the rightward moving electron, yielding a net attraction between electrons.
wavefunction is stabilized by the electron–phonon interaction — the air of romance.

The superconducting isotope effect is described with a parameter \(\alpha \), defined by \(T_c \sim M^{\alpha} \). For superconductivity mediated by the electron–phonon interaction, \(T_c \) is set by two things: the character of the overall interaction between the electrons and the average frequency of vibration of the crystal lattice. The specific formulae that predict \(T_c \) always have the form of a vibrational frequency multiplied by some function of the interaction. As atoms in a crystal vibrate like masses on springs, the vibrational frequency is proportional to \(M^{1/2} \). In an idealized case, where the interaction is independent of \(M \), \(T_c \) would be proportional to \(M^{1/2} \) and \(\alpha = 1/2 \). In actual electron–phonon-mediated superconductors, the Coulomb repulsion between electrons reduces the sensitivity of \(T_c \) to \(M \), so that \(\alpha \) is generally between 0.1 and 0.4. For an exotic superconductor whose mechanism does not rely on lattice vibrations at all, one would expect \(\alpha = 0 \). By measuring the change in \(T_c \) between \(\text{Ba}_8\text{Si}_{46} \) (containing naturally abundant Si) and \(\text{Ba}_8^{30}\text{Si}_{46} \) (the isotopic composition), and also measuring the shift in the phonon modes in the Raman spectra of the two compositions, Tanigaki and colleagues were able to determine that \(\alpha = 0.12–0.23 \) for the silicon clathrate \(\text{Ba}_8\text{Si}_{46} \).

Therefore, we can now welcome the unusual covalent metal \(\text{Ba}_8\text{Si}_{46} \) into the fold of classical electron–phonon-mediated superconductors. With a bit of further data analysis, Tanigaki and co-workers also extract an estimate for the strength of the electron–phonon coupling, measured by a dimensionless parameter \(\lambda \). The result is \(\lambda \approx 1 \), comparable to the coupling strength in the higher-\(T_c \) materials magnesium diboride (\(T_c \approx 40 \text{ K} \)) or alkali-doped fullerenes (\(T_c \approx 30 \text{ K} \)). These boron- and carbon-based systems have higher transition temperatures, mainly because C and B are lighter than Si and thus have higher-frequency lattice vibrations.

Using the new insights gained here, it may be possible to create new metallic alloys from the light main-group covalent elements — perhaps through nonequilibrium processes — to obtain even higher \(T_c \)'s in new covalent metals.

References