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We report on the complete scaling analysis of low temperature electron transport properties with and
without magnetic field in the critical regime for the metal–insulator transition in two series of
homogeneously doped p-type Ge samples: i) nominally uncompensated neutron-transmutation-doped
(NTD) 70Ge:Ga samples with the technological compensation ratio K < 0:001, and ii) intentionally
compensated NTD natGe:Ga,As samples with K ¼ 0:32. For the case of the uncompensated series in zero
magnetic field, the critical exponents �, �, and � determined for the electrical conductivity (�),
localization length (�), and impurity dielectric susceptability (�imp), respectively, change at the very
vicinity of the critical Ga concentration (N � Nc). Namely, the anomalous critical exponents, e.g.
� � 0:5, change to � � 1 only within the region 0:99Nc < N < 1:01Nc. On the other hand, the same
critical behavior, � � 1, was found for the K ¼ 0:32 series in much larger region 0:25Nc < N < 2:4Nc.
This finding suggests that the � � 1 critical behavior observed for the nominally uncompensated series
in the extremely narrow region is due to the presence of the self-compensation of acceptors by native
defects and/or technologically unavoidable very small amount of doping compensation (K < 0:001).
Therefore, the width of the concentration that can be fitted with � � 1 around Nc is likely to scale with
the degree of compensation (K), and disappears in the limit K ! 0, i.e., only the region with the
anomalous exponent � � 0:5 remains for the case of K ¼ 0. An externally applied magnetic field to
nominally uncompensated samples also broadens the width of � � 1 around Nc, but with a mechanism
clearly different from that of compensation. The unified description of our experimental results
unambiguously establishes the values of the critical exponents �, �, and � for doped semiconductors with
and without compensation and magnetic field.
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1. Introduction

The metal–insulator (MI) transition in the presence of
both disorder and electron–electron interaction turns out to
be one of the most challenging subjects in condensed-matter
physics. Despite many decades of theoretical1–6) and
experimental efforts,7–24) researchers are yet to agree upon
an unified description of the phenomena.25) The doping-
induced MI transition in single crystalline semiconductors is
the best example of disorder and interaction induced
transition that has been studied extensively via measure-
ments of physical quantities such as the electrical conduc-
tivity, dielectric constant, and heat capacity. In particular,
the critical behavior of the electrical conductivity at zero
temperature �ð0Þ has been evaluated as a function of a
parameter t that describes the degree of the disorder and
interaction;

�ð0Þ / jt=tc � 1j� ð1Þ

where � is the conductivity critical exponent and tc is the
critical value of t that separates the insulating and metallic
phases. The MI transition in semiconductors has been
investigated as a function of the doping concentration (N),
externally applied magnetic field (B), and externally applied
uniaxial stress (S), i.e., t � N;B; S, and tc � Nc;Bc; Sc,
respectively, in eq. (1). In this paper we probe the MI
transition in nominally uncompensated and intentionally

compensated Ge:Ga samples by tuning N and B.
Since the classic experiment of Rosenbaum et al. that

showed � � 0:5 for stress (S)-tuned Si:P,8) a wide variety of
experiments probing the value of � has been performed on
nominally uncompensated semiconductors as a function of N
or S in the absence of the externally applied magnetic field
B. The results are truly puzzling as summarized in Table I.
One immediately sees in Table I that different values of �
have been reported even for the same system. � � 0:5 is
puzzling from a theoretical point of view since it violates
Chayes et al.’s inequality � � 2=326) assuming Wegner’s
scaling law � ¼ � for the three dimension27) where � is the
critical exponent for the localization length � and for
correlation length �0.

Table I. Conductivity critical exponents (�) reported for a wide variety of

nominally uncompensated (K � 0) semiconductors in the absence of

externally applied magnetic field.

Semiconductor system �

Si:P 0.5,8Þ 1.0,9Þ 1.210Þ

Si:As 0.5,11Þ 1.012Þ

Si:B 0.65,13Þ 1.614Þ

Ge:As 0.5,15Þ 1.212Þ

Ge:Sb 0.916Þ

Ge:Ga 0.5,17;18Þ 1.219Þ
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The following example of the Si:P situation illustrates
very well how various research groups have reached
different values of �. Because the MI transition discussed
here is considered to be a quantum phase transition that
occurs at zero temperature, one has to rely on particular
theoretical models to extrapolate information, which repre-
sents the zero-temperature states of physical parameters such
as electrical conductivity �, localization length �, impurity
dielectric susceptability �imp, etc. Rosenbaum et al. have
measured the temperature dependence of � of nominally
uncompensated Si:P down to T ¼ 3mK with finely-tuned
uniaxial stress S, and estimated the zero temperature
conductivity �ð0Þ for a given S by linear extrapolation of
� to T ¼ 0K assuming � / T1=2. They determined � � 0:5
by achieving a good fit for a wide range on the metallic side
(0:7Sc < S < Sc) of �ð0Þ vs S by eq. (1).8) More recently, a
group from Universität Karlsruhe questioned the relatively
wide range of N and S that could be fitted with � � 0:5, and
proposed � � 1:3 on N-tuned Si:P by redefining Nc at a
value 6% smaller than that of Rosenbaum et al., and by
limiting the critical region only to Nc < N < 1:07Nc.

10)

Rosenbaum et al. immediately argued that the � � 1:3
region analyzed by the Karlsruhe group was an artifact due
to an inhomogeneous dopant distribution,28) but the Karls-
ruhe group responded that only the region scalable with the
so-called finite temperature analysis should be considered as
the true critical region.29) The finite temperature scaling
takes the form;5)

�ðt;TÞ / Txf ðjt=tc � 1j=TyÞ: ð2Þ

Here y ¼ 1=z� where z is the dynamical scaling exponent.
The critical exponent is given by � ¼ x=y. Equation (2) has
two advantages over the conventional analysis involving eq.
(1). Firstly, eq. (2) allows one to use values of �ðt; TÞ
recorded at finite temperatures, i.e., the conventional
extrapolation to T ¼ 0 can be avoided. Secondly, eq. (2)
allows one to evaluate �ðt;TÞ recorded on the both sides of
the transition (t < tc and tc < t), while eq. (1) can be used
only on the metallic side.

The Karlsruhe group has shown that their N-tuned data
scale according to eq. (2) only in the vicinity of Nc and not
for the wide range evaluated by Rosenbaum et al. In the
same spirit, the Karlsruhe group has further analyzed the
data of S-tuned Si:P and obtained � � 1 by limiting the
critical region only to the vicinity of Sc.

9) In our view, the
situation similar to Si:P applies to all the other systems listed
in Table I. Researchers, including ourselves,19) have ob-
tained � � 1 for nominally uncompensated systems only
when they have limited the critical region to a very small
range, typically within a few percent of Nc or Sc. It should
also be noted that the values of � reported for intentionally
compensated samples were always � � 1 for a wide range
of N above Nc; very often up to 50% and more.30–34) The
relation between � � 1 observed only in the vicinity of tc in
nominally uncompensated samples and the similar � � 1

observed for a wide range above tc in intentionally
compensated samples must be clarified.

Moreover, it is important to point out that many of the
previous experiments performed on the nominally uncom-
pensated samples were not supposed to be able to analyze
such a small region, within a few percent of Nc or Sc,

because a typical spatial fluctuation of the doping concen-
tration within a typical sample size of a few mm could easily
be a few percent when it was prepared by the standard melt-
doping method.35) In this regards, Rosenbaum et al.’s
warning against the analysis of the very vicinity of tc

28)

should be taken very seriously. Doping fluctuations also
make it impossible to determine Nc and Sc precisely for the
reliable determination of �. Only a few experimental groups,
including ourselves, have recognized this problem and
employed a method known as neutron-transmutation-doping
(NTD) in order to realize completely homogeneous doping
down to the atomic level.15,17–24,32) The NTD preparation of
samples is absolutely crucial for the successful scaling
analysis as we will show in this paper.

The present paper reports the experimental studies on the
effects of the doping compensation and externally applied
magnetic field on the MI transition of doped semiconductors.
In order to better illustrate the significance of the present
results, we shall summarize important conclusions of our
earlier results17–24) at the beginning of the paper, and proceed
to the discussion of the compensation and applied magnetic
field.

2. Experiment

2.1 Sample preparation and characterization
A chemically very pure 70Ge crystal of isotopic compo-

sition [70Ge] = 96.2 at.% and [72Ge] = 3.8 at.%, and a natGe
crystal with natural isotopic abundance [70Ge] = 20.5 at.%,
[72Ge] = 27.4 at.%, [73Ge] = 7.8 at.%, [74Ge] = 36.5 at.%,
and [76Ge] = 7.8 at.% were grown using the Czochralski
method. The as-grown crystals are free of dislocations, p
type with an electrically active net-impurity concentration
less than 5� 1011 cm�3.

A series of nominally uncompensated samples with the
compensation ratio K < 0:001 were prepared by the follow-
ing procedure. The thermal neutron irradiation leading to
NTD was performed at the University of Missouri Research
Reactor with a thermal to fast neutron ratio of �30 : 1.
Wafers sliced from the 70Ge crystal become p type due to
neutron capture 70Ge + n!71Ge followed by electron
capture with a half-life of 11.2 days forming a 71Ga acceptor.
The small fraction of 72Ge capturing neutron becomes 73Ge
which is stable, i.e., no further acceptors or donors are
introduced to the 70Ge crystal. The rapid-thermal annealing
after NTD at 650�C for 10 s removed most of the irradiation-
induced defects from the samples. A short annealing time is
important in order to avoid the redistribution and/or
clustering of the uniformly dispersed 71Ga acceptors. The
concentration of the electrically active radiation defects
measured with deep level transient spectrometry (DLTS)
after the annealing is less than 0.1% of the Ga concen-
tration,36) i.e., technological K < 0:001. Note here that the
so called self-compensation near N � Nc may lead to a
larger K.37) The dimension of most samples used for
conductivity measurements was 6� 0:9� 0:7mm3. Four
strips of boron-ion-implanted regions on a 6� 0:9mm2 face
of each sample were coated with 200 nm Pd and 400 nm Au
pads using a sputtering technique. Annealing at 300�C for
one hour activated the implanted boron and removed the
stress in the metal films. The Ga concentration N in our 70Ge
samples after NTD is given precisely by
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½71Ga� ðcm�3Þ ¼ 0:1155� n ðcm�2Þ; ð3Þ

where n is the thermal neutron fluence. Therefore, we have
an ability to control N � ½71Ga� with the precision of 0.01%.

A series of intentionally compensated samples has been
prepared by NTD of the natGe crystal using the same
procedure as the one employed for the nominally uncom-
pensated 70Ge samples. Upon thermal neutron irradiation,
the five stable isotopes of natGe undergo the following
nuclear reactions after neutron capture: 70Ge + n!71Ge!
71Ga acceptor, 72Ge + n!73Ge, 73Ge + n!74Ge, 74Ge +
n!75Ge!75As donor, and 76Ge + n!77Ge!77As !77Se
double donor. The isotopic abundance in natGe and the
thermal neutron capture cross sections yield a p type Ge
crystal after NTD with the fixed compensation ratio K:38)

K �
½Minority Impurity�
½Majority Impurity�

¼
½As� þ 2½Se�

½Ga�
� 0:32 ð4Þ

It is therefore possible to finely tune the net-carrier
concentration [Ga]–[As]–2[Se] with precise control of the
neutron fluence n while maintaining the compensation ratio
constant at 0.32. One of advantages of working with NTD
natGe is that we can reliably use other group’s data recorded
with NTD natGe because the compensation ratio is always
fixed at 0.32 and dopants are homogeneously distributed
regardless of who prepares it. For the work discussed here
we have prepared five samples of NTD natGe. Their
temperature dependence of the conductivity has been
analyzed together with data reported for eight NTD natGe
samples by Zabrodskii and Andreev.39)

2.2 Measurements
The electrical conductivity (�) of the nominally uncom-

pensated samples has been measured using a standard lock-
in method at 21.0Hz down to T � 20mK. The cryostat and
all the analog instruments were placed inside a shielded
room. The temperature of samples in a 3He–4He dilution
refrigerator has been calibrated very carefully as described
in ref. 18. Magnetic fields were applied in the direction
perpendicular to the current flow by means of a super-
conducting solenoid. The influence of the magnetic field on
the temperature calibration has been examined.40)

The conductivity measurements of the compensated
samples were performed using a 3He refrigerator down to
T � 300mK. The two point measurements with the im-
planted contacts were employed for many of the high
resistivity samples. Sample heating was avoided by using an
electrical power of less than 10�14 W.

3. Results I: Nominally Uncompensated NTD 70Ge:Ga
Samples

3.1 Zero-temperature scaling analysis of the metallic
samples

The temperature dependence of the electrical conductivity
�ðTÞ for eight samples with positive d�=dT in the scale of
T1=3 is shown in Fig. 1.19) Nc ¼ 1:859� 1017 cm�3 for this
nominally uncompensated series of samples as it will be
shown later by numerical fitting with eq. (2). Based on this
finding, the concentrations N of Ga of the eight samples lie
between 0:994Nc and 1:028Nc with the top three samples
being metallic at T ¼ 0K. Mott’s minimum metallic con-

ductivity �min for Ge:Ga is estimated to be 7 S/cm using the
relation �min � CMðe2=h� ÞN1=3

c with CM ¼ 1=20. The temper-
ature dependence of �ðTÞ is expected to be proportional to
T1=2 when it is governed mainly by electron–electron
interaction. Therefore, �ð0Þ is obtained usually by extra-
polation assuming �ðTÞ / T1=2, and such an analysis was
performed in our earlier work.17) However, we have
subsequently found that the samples near the transition
(<1% of Nc) obeyed � / T1=3 instead of T1=2 as shown in
Fig. 1.18) This observation of the change in the temperature
dependence from T1=2 to T1=3 as N approaches Nc is
interesting because T1=2 is predicted when interaction is
important (Mott transition) while T1=3 is expected41) when
disorder is dominant (Anderson transition).42) It indicates
that the nature of the transition for the two concentration
regions, Nc < N < 1:01Nc and 1:01Nc < N, is different for
our nominally uncompensated samples.

In ref. 18 we have developed a method that allows for an
appropriate extrapolation of �ðTÞ to T ¼ 0 when the
temperature dependence changes from T1=2 to T1=3 as N !
Nc. Figure 2 shows the zero-temperature conductivity �ð0Þ
determined for a total of twelve metallic samples, including
the three metallic samples with filled marks in Fig. 1, that we
measured previously18,19) as a function of N=Nc � 1. The
best fit to the twelve data points with eq. (1) yields � ¼
0:50	 0:04 with Nc ¼ 1:860� 1017 cm�3,18) i.e., Nc ¼
1:860� 1017 cm�3 is employed for the horizontal axis of
Fig. 2(a). On the other hand, as we will show later, the best
fit with eq. (2) with a limited number of the samples within
	1% of Nc is obtained with � ¼ 1:2 and Nc ¼ 1:859�
1017 cm�3, i.e., Nc ¼ 1:859� 1017 cm�3 is used for Fig.
2(b). Only the two metallic samples closest to Nc in Fig. 2(b)
lie within 1% of Nc and they are the samples which exibit
� / T1=3. All the samples with N=Nc � 1 > 10�2 exhibit
� / T1=2. The dashed curve is the best fit for them with
�ð0Þ / ðN=Nc � 1Þ� with � ¼ 1:2. What is interesting is the

Fig. 1. Electrical conductivity vs. T1=3 for the eight NTD 70Ge:Ga

samples in the vicinity of Nc. From bottom to top in units of 1017 cm�3,

the concentrations N are 1.848, 1.850, 1.853, 1.856, 1.858, 1.861, 1.863,

and 1.912, respectively. Samples with filled marks (top three curves) turn

out to be metallic while the ones with other marks are insulating for

T ¼ 0K.
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fact that there is a clear kink in �ð0Þ vs N=Nc � 1 for the case
of Fig. 2(b), and the fact that � ¼ 1:2 applies only for the
two samples that show T1=3 dependence.

3.2 Finite temperature analysis19)

The dependence �ðN; TÞ / T1=3 at N � Nc immediately
implies x � 1=3 in eq. (2) since the contribution to the
temperature dependence from the f ðjN=Nc � 1j=TyÞ term
becomes small for the region N � Nc. It was also shown in
Fig. 2(a) for a wide range of the concentration Nc < N <
1:4Nc that � ¼ 0:5 when the conventional zero temperature
analysis was performed with Nc ¼ 1:860� 1017 cm�3.
Therefore, x ¼ 1=3 and y ¼ 2=3 in eq. (2) are expected
from the relation � ¼ x=y for the analysis of the wide
concentration region Nc < N < 1:4Nc. Figure 3(a) shows the
finite temperature scaling plot of �ðN;TÞ using eq. (2) with
x ¼ 1=3, y ¼ 2=3, and Nc ¼ 1:860� 1017 cm�3. �ðN; TÞ
recorded between T ¼ 20 and 750mK was used for the
analysis in Fig. 3(a). Fairly good scaling was obtained on the
metallic side as expected, while scaling on the insulating
side is clearly unsatisfactory. In order to find a better set of x,

y, and Nc, numerical fitting has been performed using the
following non-linear equation;

�ðt; TÞ ¼ Tx

"
a0 þ a1

ðN=Nc � 1Þ
Ty

þ a2
ðN=Nc � 1Þ

Ty

� �2

þ a3
ðN=Nc � 1Þ

Ty

� �3
#
: ð5Þ

It is important to stress here that the conductivity of both
the metallic and insulating samples must be described by a
single scaling function, e.g., eq. (5) with a single set of
parameters. When we impose this strict restriction, it is not
possible to achieve satisfactory fitting with eq. (5) for the
samples with the wide range of N used in Fig. 3(a).

Figure 3(b) shows the result of the fitting analysis when
the critical region was limited to N ¼ Nc 	 0:01Nc, i.e., only
the data from five insulating and two metallic samples
closest to the transition are fitted. The solid curve in Fig. 3(b)
is the best fit obtained numerically with x ¼ 0:38, y ¼ 0:32,
Nc ¼ 1:8590� 1017 cm�3, a0 ¼ 5:75, a1 ¼ 580, a2 ¼
1:97� 104, and a3 ¼ 3:15� 106 in eq. (5), which agree
very well with the conductivity of both the metallic and
insulating samples. A similar fit with a fourth-order equation
leads to practically the same set of parameters with the
absolute value of the fourth-order term being much smaller
than those of the lower-order terms, i.e., third-order fitting is
sufficient. The major consequence of this analysis is � ¼
x=y ¼ 1:2	 0:2 which satisfies the Chayes et al.’s inequality
� ¼ � � 2=3.26) Although the range of N we chose for
scaling may appear to be quite small, we emphasize again
that this range is the only region that can be scaled with eq.
(2) and that the seven samples included are the only ones
having �ðN;TÞ / T1=3 with approximately the same slope

Fig. 2. Zero-temperature conductivity �ð0Þ vs N=Nc � 1 determined

experimentally ( ) by extrapolation of �ðTÞ to T ¼ 0 for (a) Nc ¼
1:860� 1017 cm�3 and (b) Nc ¼ 1:859� 1017 cm�3. They include �ð0Þ
for a total of twelve samples as a summary of the previous measure-

ments.18,19) The solid line in (a) represents the best power-law fit by

�ð0Þ / ðN=Nc � 1Þ� where Nc ¼ 1:860� 1017 cm�3 and � ¼ 0:50	
0:04. The dotted line in (b) is a fit for the two samples closest to Nc

with � ¼ 1:2 for it will be shown in Fig. 3(b) that the two samples obey

� ¼ 1:2 with Nc ¼ 1:859� 1017 cm�3 rather than � ¼ 0:5 with Nc ¼
1:860� 1017 cm�3. The solid curve in (b) is the best fit assuming

� ¼ 0:5.

Fig. 3. Finite-temperature scaling analysis of �ðN; TÞ using eq. (2) with

x ¼ 1=3, y ¼ 2=3, and Nc ¼ 1:860� 1017 cm�3, and (b) x ¼ 0:38, y ¼
0:32, and Nc ¼ 1:8590� 1017 cm�3. The solid curve in (b) is the best fit

to the data. The symbol for each sample is the same as the one in Fig. 1.
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d�=dT1=3 (see Fig. 1).
Following the success of scaling for the very narrow jN �

Ncj 
 0:01Nc region, we have attempted to scale those
samples outside of the N ¼ Nc 	 0:01Nc region, i.e., the
N � 0:01Nc and N 
 0:99Nc regions with eq. (5). The
metallic side of this region is characterized by � � 0:5 as we
have found in Fig. 2. However, even with exclusion of the
jN � Ncj 
 0:01Nc samples, we could not obtain satisfactory
fitting with eq. (5). Therefore, the so called � � 0:5 region is
not scalable with the finite temperature scaling eq. (2).

3.3 Scaling of the variable range hopping resistivity as
N ! Nc from the insulating side20,21)

Since it has become clear from the finite temperature
scaling and the zero-temperature scaling of the metallic
conductivity that the nature of the conduction within 	1% of
Nc is different from that of outside (N < 0:99Nc and
1:01Nc < N), it becomes important to evaluate the behavior
of the charge transport on the insulating side in detail.

Figure 4 shows the temperature dependence of the
resistivity � of eighteen insulating samples in the temper-
ature range T ¼ 20{250mK. In general the temperature
dependence of the resistivity � for variable range hopping
conduction is given by

� ¼ �0T
q expðT0=TÞp ð6Þ

where p ¼ 1=4 and 1=2 have been predicted for hopping
across1) and within43) a parabolic-shaped Coulomb gap in the
density of the states, respectively. q ¼ 0 is usually assumed
since the temperature dependence in the strongly localized
regime is determined mainly by the value of p in the
exponential term. Note that ln � is plotted against T�1=2 in
Fig. 4 because most of the curves in the low temperature
limit appear to form straight lines supporting the relation
ln � / T�1=2. However, a closer inspection of the samples
close to Nc has revealed that q ¼ �1=3.20,21) Figure 5(a)
shows ln � vs T�1=2 for the four samples close to Nc that do
not actually obey eq. (6) when q ¼ 0 is assumed. On the

other hand, it becomes consistent with eq. (6) when q ¼
�1=3 is assumed as seen from the straightness of the data in
the plot of ln �T1=3 vs T�1=2 in Fig. 5(b) with respect to that
in (a). � / T�1=3 is consistent with the observation � ¼
��1 / T1=3 in Fig. 1.

Because the variable range hopping theory of Efros and
Shklovskii43) applies to our nominally uncompensated
samples all the way to Nc from the insulating side, we shall
use the following relation to scale T0 in eq. (6) with p ¼ 1=2
and q ¼ �1=3:

kBT0 �
1

4�	0

2:8e2

	ðNÞ�ðNÞ
ð7Þ

in SI units, where 	ðNÞ ¼ 	h þ �impðNÞ is the dielectric
constant and �ðNÞ is the localization length. �impðNÞ is the
impurity dielectric susceptability and 	h ¼ 15:4 is the
relative dielectric constant of the host germanium. As N

approaches Nc from the insulating side one expects
�impðNÞ ¼ �0ð1� N=NcÞ�� and �ðNÞ ¼ �0ð1� N=NcÞ��.
With these relations T0 becomes

kBT0 ¼
2:8e2

4�	0�0�0
ð1� N=NcÞ
; ð8Þ

Fig. 4. ln � vs T�1=2 for 18 insulating samples. The concentration N from

top to bottom in the unit of Nc are 0.923, 0.943, 0.948, 0.951, 0.952,

0.957, 0.966, 0.971, 0.981, 0.986, 0.989, 0.990, 0.991, 0.992, 0.994,

0.995, 0.997, and 0.999. (Nc ¼ 1:859� 1017 cm�3).

Fig. 5. (a) ln � vs T�1=2 and (b) ln(� multiplied by T1=3) vs T�1=2. From

top to bottom N=Nc ¼ 0:994; 0:995; 0:997, and 0.999.
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assuming �impðNÞ � 	h in the critical regime. The critical
exponent 
 ¼ � þ � for T0 has been determined experimen-
tally for our nominally uncompensated samples by evaluat-
ing the slope T0 of each sample shown in Fig. 4 as a function
of N. As seen in Fig. 6, there is a kink at 1% below Nc which
divides the regions into 
 ¼ 0:95	 0:08 for 0:9Nc < N <
0:99Nc and 
 ¼ 3:5	 0:8 for 0:99Nc < N < 0:999Nc. The
solid curve in Fig. 6 represents calculated T0 for the 0:9Nc <
N < 0:99Nc region using eq. (8) with 
 ¼ 1, �0 ¼ 15:4
(dielectric constant of host Ge), and �0 ¼ 8 nm (Bohr radius
of Ga acceptors) as was done by Ionov et al.,44) which agrees
surprisingly well with the data in the 
 ¼ 1 region.
However, it is obvious that we expect �0 to be the dielectric
susceptability of a single Ga acceptor instead of 	h ¼ 15:4
for the critical region. The dashed curve in Fig. 6 is the best
fit to T0 for the 0:99Nc < N < 0:999Nc region using eq. (8)
with 
 ¼ 3:5, �0 ¼ 2� 10�4, and �0 ¼ 8 nm. Note that the
value �0 ¼ 2� 10�4 is reasonable for a single Ga acceptor.

3.4 Scaling of the localization length � and the impurity
dielectric susceptability �imp for N ! Nc from the
insulating side21)

Our next step is to separate T0 into � and �imp based on the
magnetoresistance measurement performed on our nominal-
ly uncompensated series of insulating samples that demon-
strates Efros and Shklovskii’s variable range hopping
conduction all the way up to Nc. For �=� � 1, the
magnetoresistance of the variable range hopping is ex-
pressed by;43)

ln½�ðB;TÞ=�ð0;TÞ� � 0:0015 ð�=�Þ4 ðT0=TÞ3=2; ð9Þ

where � �
ffiffiffiffiffiffiffiffiffiffi
h�=eB

p
is the magnetic length in SI units.

According to eq. (9), the magnetic-field variation of ln � at
T ¼ const. is proportional to B2, i.e., ln �ðB;TÞ ¼
ln �ð0;TÞ þ CðTÞB2, and the slope CðTÞ is proportional to
T�3=2. Since eq. (9) is equivalent to

� � CðTÞ=T�3=2 � 0:0015ðe=h� Þ2�4T3=2
0 ; ð10Þ

� is given by

� � 5:1ðh�=eÞ1=2�1=4T
�3=8
0 : ð11Þ

Therefore, it is possible to determine � of each sample from

the magnetoresistance measurements and calculate �imp

using eqs. (7) and (11). Details of such procedures have been
given in ref. 21.

Figure 7 shows � and �imp ¼ 	� 	h determined for our
nominally uncompensated samples.21) We should note that
both � and �imp are sufficiently larger than the Bohr radius
(8 nm for Ge) and static host dielectric constant of Ge
(	h ¼ 15:4), respectively. Just like for the case of T0 shown
in Fig. 6, both � and �imp show sharp kinks at N � 0:99Nc.
The concentration dependence of � and �imp below and
above 0:99Nc can be independently fitted very well with the
scaling formula �ðNÞ / ð1� N=NcÞ�� and �impðNÞ /
ðNc=N � 1Þ��, respectively, as shown in Fig. 7.

The most important outcome here is the experimental
confirmation of Wegner’s scaling law27) � � � (� 1:2) and
the prediction of the scaling theory 2� � � (� 2:3) for the
region 0:99Nc < N < 0:999Nc. On the other hand, � � 0:5
determined from the zero temperature extrapolation, is not
equal to � � 0:33 for the region N < 0:99Nc, though the
relation 2� � � ð� 0:62Þ is satisfied. It was already indicated
by the finite temperature scaling that only the region within
1% of Nc is scalable with eq. (2). The fact that Wegner’s
scaling law is valid only within 1% of Nc supports our earlier
finding that the scaling theory is applicable only to the
region within 1% of Nc and not to the region outside for the
case of the nominally compensated Ge.

Figure 8 summarizes the behavior of T0 and �ð0Þ as a
function of normalized concentration N=Nc for the nomi-
nally uncompensated samples. The solid curves are the
scaling curves with 
 ¼ 0:95 for the insulating samples, and
� ¼ 0:5 for the metallic samples that are valid for the
samples outside of 	1% of Nc. The dashed curves are the
scaling curves with 
 ¼ 3:5 for the insulating samples, and
� ¼ 1:2 for the metallic samples that are for inside of 	1%

of Nc. The plot shows convincingly that the nature of the
region within 	1% of Nc is different from that of outside.

Fig. 6. T0 as a function of 1� N=Nc determined with p ¼ 1=2 and q ¼
�1=3 in eq. (6). The solid and dashed curves are the best fits to the data

for the regions 1� N=Nc > 10�2 and 1� N=Nc < 10�2, respectively.

Fig. 7. Localization length � vs 1� N=Nc (lower data set) and the

dielectric susceptibility �imp arising from the impurities vs Nc=N � 1

(upper data set). Dashed curves are the fits to the data with �ðNÞ /
ð1� N=NcÞ�� and �impðNÞ / ðNc=N � 1Þ�� .
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4. Results II: Deliberately Compensated NTD natGe:Ga
Samples

Figure 9 shows the temperature dependence of the
resistivity for thirteen deliberately compensated (K ¼ 0:32)
NTD natGe:Ga,As samples analyzed in this study. Some of
the data (open circles), which have been published in ref. 39,
were provided by Professor Zabrodskii. The ranges of
temperatures used for the measurements are T ¼ 0:25{1K
and 0.65–2K for filled and open circles in Fig. 9, respec-
tively.

For our deliberately compensated series, the critical
exponent 
 ¼ � þ � for T0 has been determined experimen-
tally by evaluating the slope T0 of each sample shown in
Fig. 9. Similarly, the conductivity exponent � has been
determined based on the extrapolation of �ðN;TÞ to T ¼ 0K.
The results are summarized in Fig. 10. The least-square
fitting (solid curves in Fig. 10) for the wide range of

concentration 0:25Nc < N < 2:4Nc yields 
 ¼ 3:06	 0:25
and � ¼ 0:97	 0:07, and they are found to satisfy the
expected relation 
 � 3� � 3� so that Wegner’s relation
� ¼ �. Our results, 
 ¼ 3:06	 0:25, is in excellent agree-
ment with Rentzsch et al.’s results, 
 � 3, previously
reported for two series of n-type NTD 74Ge:As with K ¼
0:38 and 0.54 in the concentration range 0:2 < N=Nc <
0:91.45) It was also shown by Katsumoto et al. that � � 2 for
compensated samples,34) i.e., the combination of our results
for deliberately compensated samples 
 ¼ �þ � � 3 with
Katsumoto’s � � 2 yields � � 1 � � that satisfies Wegner’s
scaling law. The significance of 
 ¼ 3:06	 0:25 and � ¼
0:97	 0:07 for a wide range 0:25Nc < N < 2:4Nc of the
K ¼ 0:32 series is the fact that they agree very well with

 ¼ 3:5	 0:8 and � ¼ 1:2	 0:2 for a very narrow range
0:99Nc < N < 1:01Nc of the nominally uncompensated
series.

Figure 11 shows the finite temperature scaling of the K ¼
0:32 series. For this purpose we have performed a least-
square fitting with open circles only because the open circles
cover a wide range of concentrations spanning both the
insulating and the metallic phases, while filled circles cover

Fig. 8. T0 ( ) and �ð0Þ ( ) as a function of normalized cocentration

N=Nc for the nominally uncompensated samples. The solid curves are the

scaling curves with 
 ¼ 0:95 for the insulating samples, and � ¼ 0:5 for

the metallic samples that are outside of 	1% of Nc. The dashed curves are

the scaling curves with 
 ¼ 3:5 for the insulating samples, and � ¼ 1:2

for the metallic samples that are inside of 	1% of Nc.

Fig. 9. ln � vs T�1=2 of thirteen NTD natGe:Ga,As with K ¼ 0:32

evaluated in this study. Filled circles represent the samples prepared

and measured by the present authors while open circles are the data

provided by Professor Zabrodskii.39) The concentrations N from top to

bottom in the unit of Nc are 0.25, 0.35, 0.45, 0.53, 0.56, 0.60, 0.71, 0.72,

0.93, 1.28, 1.36, 1.94, and 2.40.

Fig. 10. T0 ( and ) and �ð0Þ ( ) as a function of normalized

concentration N=Nc for the deliberately compensated, K ¼ 0:32 samples.

The solid scaling curves are the best fits obtained with 
 ¼ 3:06 and

� ¼ 0:97. Filled circles represent the samples prepared and measured by

the present authors while open circles and squares represent the samples

prepared and measured by Professor Zabrodskii and co-workers.39)

Fig. 11. Finite temperature scaling analysis of �ðN;TÞ using eq. (12) with

x ¼ 0:33 and y ¼ 0:32. The solid curve is the best fit to the data

represented by open circles. Open and filled circles are the same as in

Fig. 9. One in every three data points is shown for open circles.
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only the limited regions of the insulating phase.

ln
�ðt;TÞ
Tx

¼

"
a0 þ a1

ðN=Nc � 1Þ
Ty

þ a2
ðN=Nc � 1Þ

Ty

� �2

þ a3
ðN=Nc � 1Þ

Ty

� �3
#
: ð12Þ

The solid curve in Fig. 11 is the best fit obtained numerically
with x ¼ 0:33, y ¼ 0:32, a0 ¼ 1:05, a1 ¼ 4:55, a2 ¼ �5:69,
and a3 ¼ 2:90 using eq. (12). It is shown convincingly that
the conductivity of the K ¼ 0:32 series (especially open
circles for they are the data used for fitting) collapse to form
one universal curve for a very wide range of concentration
0:25Nc < N < 2:4Nc. As expected, the value of the con-
ductivity critical exponent � ¼ x=y ¼ 1:01	 0:04 found
from this analysis is in excellent agreement with � ¼
0:97	 0:07 determined by the zero-temperature extrapola-
tion in Fig. 10. The deviation of open and filled circles in
Fig. 11 at lower temperatures is due to the fact that the data
recorded in the present study ( ) extend to much lower
temperatures. The open circles are expected to merge with
filled circles when the measurements are extended to lower
temperatures. However, one sees in Fig. 11 that each series
( and ) collapses onto a separate single curve and the
difference between the two is very small. The result of the
analysis with eq. (12) is practically unchanged even if we
include both open and filled circles.

5. Results III: Effect of Magnetic Field

Similar to the effect of compensation, � � 1 has been
found experimentally for magnetic flux density B of the
order of one tesla for nominally uncompensated semi-
conductors: Ge:Sb,16,46) Ge:Ga,18) Si:B,47,48) and Si:P.49) In
order to discuss the effect of externally applied magnetic
field on the nature of the MI transition, it is important to
consider the length scale known as the magnetic length
� �

ffiffiffiffiffiffiffiffiffiffi
h�=eB

p
.50) When a variety of length scales such as the

correlation length, thermal diffusion length, inelastic scat-
tering length, spin scattering length, and spin–orbit scatter-
ing length are larger than � , the system is considered to be in
the ‘‘magnetic-field regime’’. The length scale of interest to
us is the correlation length �0 on the metallic side (N > Nc)
that diverges at N ¼ Nc. When the field strength is weak, the
‘‘magnetic-field regime’’ where we assume � � 1 to hold is
restricted to a narrow region of the concentration around Nc.
Outside this region, the system crosses over to the ‘‘zero-
field regime’’ where � ¼ 0:5 is found. Such behavior is
depicted in Fig. 12 where �ðB; 0Þ, the zero-temperature
conductivity at constant B, is plotted as a function of
N=Nc � 1. The shaded region in Fig. 12 is the ‘‘magnetic-
field regime’’ where � < �0, i.e., � � 1, while outside of the
region is the ‘‘none-magnetic-field regime’’ where � > �0,
i.e., � � 0:5. The correlation length �0 as a function of
N=Ncð0Þ � 1 in Fig. 12 has been estimated assuming that
values of the correlation length �0 are equal to the local-
ization length � given in Fig. 7 with the mirror symmetry
around Nc, i.e., �ð1� N=NcÞ ¼ �0ðN=Nc � 1Þ, since the
exponent is the same and the amplitude ratio is usually of
the order of unity. The exponent � obtained for the
‘‘magnetic-field regime’’ by eq. (1) with t � N and tc � Nc

are � ¼ 1:03	 0:03 at B ¼ 4T and � ¼ 1:09	 0:05 at

B ¼ 5T.
Figure 13 shows the magnetic field and temperature

dependence of the conductivity �ðB; TÞ of a sample having
N ¼ 2:004� 1017 cm�3. In contrast to Fig. 1 of the N-tuning
experiment with B ¼ 0, �ðB;TÞ / T1=2 is observed for a
wide range of constant B, i.e., �ðB; TÞ is plotted against T1=2.
The zero temperature conductivity �ðB; 0Þ obtained by the
simple extrapolation of �ðB;TÞ to T ¼ 0 assuming �ðB;TÞ /
T1=2 decreases with increasing B. This particular sample was
found to undergo a MI transition at Bc ¼ 5:5T with � ¼

Fig. 12. Zero-temperature conductivity �ðB; 0Þ vs normalized concentra-

tion N=Ncð0Þ � 1, where �ðB; 0Þ is the zero-temperature conductivity for a

constant B and Ncð0Þ ¼ 1:859� 1017 cm�3 is the critical concentration at

B ¼ 0. From top to bottom the magnetic flux density increases from 1T to

8T in steps of 1 T. The dashed curve at the top is for B ¼ 0. � � 1 holds

within the shaded region where � < �0, while � � 0:5 is valid for outside

where � > �0. � and �0 are the magnetic and correlation lengths,

respectively.

Fig. 13. �ðB; TÞ vs T1=2 of the N ¼ 1:063Nc sample at the constant

magnetic field B. From top to bottom: B ¼ 0; 2:0; 4:0; 4:8; 4:9; 5:0; 5:1;

5:2; 5:3; 5:4; 5:5; 5:6; 5:7; 5:8; 5:9; 6:0; 7:0 and 8.0 T. One in every thirty

data points is shown.
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1:1	 0:1 based on the analysis using eq. (1) with t � B and
tc � Bc.

Figure 14 shows the finite temperature scaling of �ðB; TÞ
for B ¼ 2{6T and T ¼ 50{500mK for the metallic samples
and B ¼ 2{6T and T ¼ 100{250mK for the insulating
samples. These ranges of B and T have been chosen in order
to ensure that �ðB; TÞ of each sample is / T1=2 with
approximately the same d�=dT in Fig. 13. The solid curve in
Fig. 14 is the best fit using eq. (2) with t � B and tc � Bc,
and x ¼ 0:50, y ¼ 0:54, Bc ¼ 5:45T, a0 ¼ 7:43, a1 ¼ 8:30,
a2 ¼ �0:217, and a3 ¼ �0:063. The conductivity critical
exponent � ¼ x=y ¼ 0:93	 0:10 obtained here for the
magnetic-field tuning of a Ge:Ga with N ¼ 1:063Nc is in
good agreement with the results of the conventional
extrapolation analysis � ¼ 1:1	 0:1.22) We have shown
theoretically in ref. 22 that the critical exponent � obtained
by N-tuning with constant B is equal to � obtained by B-
tuning as long as they are in the ‘‘magnetic-field regime’’.

6. Discussion

The critical exponents obtained for Ga:Ge are summariz-
ed in Table II. For the case of nominally uncompensated
samples (K � 0) with B ¼ 0, � � 0:5 is obtained for the
wide concentration range 1:01Nc < N < 1:4Nc by the con-
ventional extrapolation of �ðTÞ to T ¼ 0. However, the finite
temperature scaling is not applicable to this region. � � 0:5
obtained from extrapolation is not equal to � � 0:33, i.e.,
Wegner’s scaling law of � ¼ � is not satisfied, though the
prediction of the scaling theory 2� � � seems to hold for the
wide range in the insulating side. It is important to notice
that all of � � 0:5 previously reported for a variety of doped

semiconductors (see Table I) have been obtained for the
wide range of concentrations on the metallic side by the
extrapolation method, which means the behavior is univer-
sal. This situation changes dramatically if we limit the
region to 0:99Nc < N < 1:01Nc. Both the finite temperature
scaling and extrapolation to zero-temperature work, and
Wegner’s scaling law � � � � 1:2 and the prediction of the
scaling theory 2� � � are satisfied. Together with z � 3, all
of the critical exponents we obtain for this narrow region of
nominally uncompensated Ge:Ga agree with what have been
obtained with nominally uncompensated Si:P by the Karls-
ruhe group.9,10) Again, this shows how universal this
behavior for doped semiconductor is regardless of the
material system (Si or Ge) and conduction type (n or p
types). In fact, all of � � 1 cases listed in Table I have been
found by limiting the critical region very close to Nc, as was
done in our analysis.

For the case of intentionally compensated samples
(K ¼ 0:32) with B ¼ 0, both the finite temperature scaling
and extrapolation to zero-temperature work for a surpris-
ingly large region 0:25Nc < N < 2:4Nc. Wenger’s scaling
law � � � � 1:0 and the prediction of the scaling theory
2� � � are satisfied. z ¼ 3 is found from the finite temper-
ature scaling.

For the case of nominally uncompensated samples (K �
0) with finite magnetic fields B > 0, the finite temperature
scaling with B and T applies as long as the system is in the
magnetic field regime, i.e., � < �0 as shown in Figs. 12 and
14. � � 1:0 and z � 2 have been determined for the
magnetic field induced transition.

The most distinct feature in Table II is the fact that all of
the critical exponents found for K � 0 with B ¼ 0 for
0:99Nc < N < 1:01Nc agree within their experimental errors
with those for K � 0:32 with B ¼ 0. This is a strong
evidence for the fact that the critical behavior in these
regions is governed by the same physics, namely doping-
compensation, i.e., the width of the � � 1 region is
determined by the degree of doping-compensation. It appear
to scale with the value of K and disappear for completely
uncompensated (K ¼ 0) semiconductors. The experimental
problem, of course, is that it is impossible to prepare K ¼ 0

samples both technologically and thermodynamically.37) The
reason for the wide scattering of critical exponents �
reported for nominally uncompensated systems in Table I
may be very simple; researchers have employed samples
prepared in different manners (leading to different values of
K) and they probed a wide variety of widths around Nc and/
or Sc, i.e., some found � � 1 governed by the effect of
unavoidable compensation and others found � � 0:5 meas-

Fig. 14. Finite temperature scaling analysis of �ðB;TÞ using eq. (2) with

x ¼ 0:50, y ¼ 0:54, and Bc ¼ 5:45T, The solid curve is the best fit to the

data. The symbol for each sample is same as the one in Fig. 13.

Table II. Critical exponents of Ge:Ga. �½�ð0Þ� have been determined by the conventional extrapolation to zero temperature using eq. (1). x and y have been

determined by the finite temperature scaling [eq. (2)]. Columns with � cannot be determined because the finite temperature scaling is not applicable.

Missing critical exponents (open columns) are to be determined in the future. The exponent in parentheses has been taken from ref. 34. The error bars for

those not specified are typically �10%.

� [�(0)] x y � (¼ x=y) 
 � � z

K � 0, B ¼ 0, j�N=Ncj > 1% 0:50	 0:04 � � � 0:95	 0:08 0.33 0.62 �
K � 0, B ¼ 0, j�N=Ncj < 1% 0.38 0.32 1:2	 0:2 3:5	 0:8 1.2 2.3 3

K ¼ 0:32, B ¼ 0 0:97	 0:07 0.33 0.32 1:01	 0:04 3:06	 0:25 1 (�2) 3

K ¼ 0, B 6¼ 0 1:1	 0:1 0.50 0.54 0:93	 0:10 2
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uring the region further away from Nc and Sc. A perfectly
uncompensated doped semiconductor is a half-filled Hub-
bard system where electron–electron interaction becomes
more important with respect to the effect of disorder. On the
other hand, compensation introduces more positively and
negatively charged ionized impurities, which act as sources
of disorders. This very simple picture phenomenologically
describes why the critical exponents of the ‘‘compensated
region’’, 0:99Nc < N < 1:01Nc of the K � 0 series and
0:25Nc < N < 2:4Nc of the K ¼ 0:32 series, agree with
predictions of non-interacting theories. In the future it will
be important to experimentally find how the width of the
� � 1 region scale with the value of K. Growth of single
crystalline Ge with controlled mixture of 70Ge and 74Ge
followed by NTD is the ideal way to prepare samples with a
controlled range of compensations.45,51) There have been one
experimental attempt to probe the critical exponents as a
function of compensation. Rentzsch et al. have reported 
 �
1:5 for the series with K ¼ 0:014 and 0.12.44) However, they
could not resolve the two independent regions, 
 � 3:5 for
away from Nc and 
 � 1 for near Nc because the number of
samples they evaluated was limited to six. It would be of a
great interest for Rentzsch et al. to prepare more samples,
identify the two regions, and determine how the width of the
‘‘compensated region’’ changes as a function of the
compensation.

Now we turn our attention to the effect of the magnetic
field. The magnetic field, which breaks the time reversal
symmetry, is expected to bring the system into a different
universality class, leading to a different value of �.3,4)

However, � � 1 obtained from the ‘‘compensated region’’
with B ¼ 0 agrees with � ¼ x=y � 1 obtained from the
transition of the K � 0 series in the constant magnetic field
(Fig. 12) and by the magnetic field (Fig. 14) within their
experimental errors. One may naively conclude from this
observation that the effects of the compensation and
magnetic field are the same. However, one should note that
the dynamical exponent z � 3 for the compensation is
different from z � 2 for the magnetic field. Therefore, the
universality classes of the ‘‘compensated region’’ and the
‘‘magnetic field region’’ are different.

7. Concluding Remarks

We have performed a complete scaling analysis of the low
temperature electrical conductivity of nominally uncompen-
sated and deliberately compensated Ge:Ga samples. We
have determined the critical exponents for conductivity,
dielectric constant, and localization and correlation lengths,
and have suggested that the large scattering in the values of
the critical exponents shown in Table I is due to the effect of
compensation.

All aspects of the � � � � 1 region dominated by
compensation are in complete agreement with the predic-
tions of the original scaling theory for non-interacting
system.2) The same results have been found for nominally
uncompensated Si:P and other systems, i.e., the phenomenon
is universal. While everything appears to be consistent with
the picture of purely disorder driven transitions, two
important issues remain. The first one is the fact that more
advanced calculations for purely disorder induced transitions
predict � ¼ 1:57	 0:02 for the orthogonal universality class

and � ¼ 1:43	 0:04 for the unitary universality class,52,53)

while our experiment finds � � � � 1. Electron–electron
interaction may be responsible for this small difference even
though the effect of disorder is dominant for this region. The
second issue relates to the question why such a wide range of
concentration (0:25Nc < N < 2:4Nc) can be fitted with the
finite temperature scaling for K ¼ 0:32 while theory is
expected to be valid only in the vicinity of Nc.

We believe that the � � 0:5 region situated outside of the
� � 1 region is the intrinsic part of the uncompensated
system. Many aspects of it do not agree with scaling theory:
Wegner’s scaling law is broken (� 6¼�), the finite temper-
ature scaling is not applicable, and � � 0:33 severely
violates the inequality � � 2=3. Although there have been
a number of theoretical proposals to explain these anom-
alous phenomena,54–59) none of them have been accepted
widely. The present experiment has revealed the anomalous
aspects of the uncompensated system so unambiguously that
it remains to be a theoretical challenge to describe such
phenomena.
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