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Geometric phase gates with adiabatic control in electron spin resonance
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High-fidelity quantum operations are a key requirement for fault-tolerant quantum information processing.
Manipulation of electron spins is usually achieved with time-dependent microwave fields. In contrast to the
conventional dynamic approach, adiabatic geometric phase operations are expected to be less sensitive to certain
kinds of noise and field inhomogeneities. Here, we introduce an adiabatic geometric phase gate for the electron
spin. Benchmarking it against existing dynamic and nonadiabatic geometric gates through simulations and
experiments, we show that it is indeed inherently robust against inhomogeneity in the applied microwave field
strength. While only little advantage is offered over error-correcting composite pulses for modest inhomogeneities
�10%, the adiabatic approach reveals its potential for situations where field inhomogeneities are unavoidably
large.
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I. INTRODUCTION

Precise coherent control of quantum systems is an essential
ingredient for many quantum technologies. In particular, high-
fidelity gate operations on quantum bits (qubits) are central to
practical realizations of quantum information processing [1].
The electron spin provides a quantum two-level system that
is well suited for the physical implementation of a qubit.
Dynamic control of electron spin states is commonly realized
by applying microwave pulses in electron spin resonance
(ESR) [2]. Although single microwave pulses in conventional
ESR spectrometers usually have non-negligible errors in
amplitude and phase [3], high-fidelity single-qubit operations
can often still be realized using carefully designed pulse
sequences such as broadband composite pulses (BB1) [4,5]
and Knill pulses [6,7].

A different approach to qubit operations involves geometric
manipulations of the quantum system [8–12]. This geometric
approach to quantum computing is argued to be more robust
against noise in the control parameters [13–16]. Geometric
single- and two-qubit logic gates have been demonstrated in
some systems such as nuclear spins [17–19], trapped ions [20],
and superconducting qubits [21,22]. For spin-1/2 systems,
theoretical calculations predict robustness against fluctuations
in the static field and inhomogeneities in the microwave field
[23]; this has also been explored experimentally with trapped
ultracold neutrons [24].
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Here, we demonstrate the implementation of a single-qubit
geometric phase gate using adiabatic control of electron
spins. We show that under current experimental conditions
this leads to a much higher fidelity than achieved with
simple dynamic phase gates. Interestingly, we find that the
adiabatically obtained fidelity is comparable to that achieved
by composite nonadiabatic pulses. These results are also
verified by simulations, which indicate that the fidelity of
the adiabatic geometric phase gate remains high when the
inhomogeneity in the microwave field strength becomes large,
unlike for the nonadiabatic approach.

II. GEOMETRIC PHASE

After a cyclic evolution, a quantum system acquires a
phase that depends on the geometric property of the evolution,
the so-called Berry phase [8]. For an electron spin 1/2, this
geometric phase is determined by its trajectory on the Bloch
sphere. Consider a spin initialized in the eigenstate |0〉 with
respect to a static magnetic field along the z axis, and with an
additionally applied microwave field detuned from resonance
[see Fig. 1(a)]. Then, slowly tuning the microwave frequency
into resonance induces the eigenstate |0(t)〉 to adiabatically
follow the effective magnetic field B(t) in the rotating frame,
rotating it into the xy plane. The phase of the microwave
drive can be swept to rotate the eigenstate by some angle
φ. Finally, the microwave field is detuned again, taking the
eigenstate back to the z axis. The geometric phase γ|0〉 acquired
by the state |0〉 is given by the enclosed solid angle � of
its trajectory on the Bloch sphere, γ|0〉 = �/2 = φ/2. By the
same analysis, the geometric phase acquired for the |1〉 state
is γ|1〉 = −φ/2, yielding a geometric phase for a general state
of γ = γ|0〉 − γ|1〉 = φ.
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FIG. 1. (Color online) (a) Evolution of the spin eigenstate |0〉
(red trace C1) represented by the spin vector S and effective magnetic
field arising from the applied microwave field (blue trace C2). (b) The
detuning �, amplitude �, and phase ϕ of the microwave field during
an adiabatic π phase gate (� and � are shown in arbitrary units).
The microwave frequency is tuned from off resonance to resonance
between time 0 and td and then kept resonant for a period of ts
while the phase φ of the microwave is swept. After time td + ts the
microwave is detuned again. The effective Hamiltonian changes sign
after the π phase shift at td + ts/2. (c) The x (blue) and y (green)
components of the microwave field applied to the electron spin for a
π phase gate (in arbitrary units).

In addition to the geometric phase, the electron spin also
acquires a dynamic phase during the evolution given by
δ = ∫ τ

0
1
h̄
gμB(t)S dt , where τ is the total length of the control

sequence and S is the expectation value of the spin operator,
so that gμB(t)S = E(t) is the time-dependent energy of the
eigenstate. To remove this dynamic phase from the final state,
we introduce a π phase shift of the microwave field exactly
halfway through the control sequence. The dynamic phase
accumulated during the second half of the control sequence

is δ2 = ∫ τ
τ
2

1
h̄
gμB(t)S dt = − ∫ τ

2
0

1
h̄
gμB(t)S dt = −δ1, thus

resulting in a vanishing final dynamic phase. We expect our
adiabatic geometric phase gate to be particularly well suited
for ESR and other schemes employing the rotating frame
since the phase degree of freedom can be controlled with high
speed and accuracy, providing a convenient cancellation of
the dynamic phase.

III. MODEL

There are two options for tuning the initially off-resonant
microwave field into resonance: first, by adding an offset to
the static field B0 in z direction whose magnitude decreases
in time. Second, by tuning the frequency of the microwave
field. As the length of the adiabatic process is within a few
microseconds, we employ the latter approach.

For a time-dependent microwave frequency ω(t), the
transformation of the Hamiltonian from the laboratory frame to
a rotating frame with subsequent rotating wave approximation
(RWA) can be performed in several ways. For instance, one
can use the canonical rotating frame with constant frequency
ωR, where the spin-resonance frequency ω0 would be a
natural choice for ωR. However, the resulting Hamiltonian
then features important time-dependent oscillatory terms.
Alternatively, we can choose a rotating frame which always

tracks the frequency of the driving microwave field ωR = ω(t).
In this case, the transformed Hamiltonian after the RWA is
given in the eigenbasis of Sz by

H = h̄

(
1
2 (� + t�̇) �e−iϕ

�eiϕ − 1
2 (� + t�̇)

)
, (1)

where �,ϕ are the time-dependent amplitude and phase of
the microwave field, � = ω(t) − ω0 is the detuning, and �̇ =
ω̇(t) its time derivative. For our simulations this form of the
transformation is used, ensuring that the measurement of the
spin magnetization is carried out in the same reference frame
that is used for the depiction of the trajectory on the Bloch
sphere in Fig. 1(a).

Figures 1(b) and 1(c) show the microwave profile used in
this study for implementing an adiabatic geometric π phase
gate (see the Appendix for its mathematical parametrization).
The fast oscillations at the beginning and the end of the control
sequence in Fig. 1(c) arise due to the finite detuning, getting
slower as the microwave field approaches resonance (� → 0),
and disappearing entirely for td � t � td + ts . The variation
of the x and y components of the microwave field �x and
�y , respectively, during td � t � td + ts is due to the phase
sweep of the microwave which causes the rotation of the spin
magnetization in the xy plane.

Different choices for the microwave profile could be made,
but vitally the time derivatives (�̇,�̇,ϕ̇) must be kept con-
tinuous (except at time t = td + ts/2) for achieving adiabatic
evolution. However, continuity of the aforementioned param-
eters is not sufficient for meeting the adiabaticity condition,
which also requires that the control sequence τ should take
much longer than the spin precession, i.e., τ � �−1

0 , where
�0 is the initial detuning. Experiment and simulation both
confirm that with all the other parameters fixed, the fidelity of
the adiabatic phase gate increases with τ .

IV. SIMULATION

We simulate such an adiabatic π phase gate and compare
its performance with phase gates based on dynamic pulses.
The adiabatic implementation is based on the pulse sequence
shown in Fig. 1(c), whereas the sequence for applying a
dynamic phase φ is (π

2 )x(φ)y(π
2 )−x . The corresponding BB1

composite pulse sequence is built by replacing each single
pulse with a composite pulse (θ )ϕ0 (π )ϕ1+ϕ0 (2π )ϕ2+ϕ0 (π )ϕ1+ϕ0 ,
where θ and ϕ0 ∈ {x,y, − x} are the rotation angle and
phase of the corresponding single pulse, respectively, and
ϕ1 = arccos(−θ/4π ),ϕ2 = 3ϕ1. It is also possible to construct
a nonadiabatic geometric phase gate by applying two π pulses
of different phase successively (π )ϕ1 (π )ϕ2 , and the BB1 version
of this sequence can be built accordingly. The geometric
phase acquired by this operation is determined by the phase
difference between the two π pulses: γ = 2(ϕ2 − ϕ1).

The simulated phase errors of the three different phase
gates are shown as a function of the deviation from a given
microwave amplitude in Fig. 2(a). The maximum relative devi-
ation ��0 from its center value �0 is set to ±10%, a common
value for typical ESR spectrometers. The results show that the
phase error in the BB1 dynamic phase gate is much larger than
for both geometric phase gates. The relative phase error has a
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FIG. 2. (Color online) (a) Simulated relative phase errors εr =
γ /π − 1 for π phase gates as functions of the error in microwave
amplitude ��0/�0, where γ is the acquired phase in the simulation.
The inset shows a zoomed in view of εr for a better comparison of
the two geometric gates. (b) Infidelities I (see text) of the operations
as functions of ��0/�0. All simulations employ a single spin 1/2
and do not include inhomogeneous broadening of the spin packet.
The parameters are �0 = 14 MHz, initial detuning �0 = 6 MHz,
td = 2 μs, and ts = 4 μs. Note that, since there is no microwave
noise, the BB1 errors are independent of the BB1 pulse duration.

third-order dependence on the error in microwave amplitude
for the BB1 dynamic phase gate, i.e., εr,dyn ∼ O[(��0/�0)3],
whereas it has a sixth-order dependence for the BB1 geometric
phase gate, i.e., εr,geo ∼ O[(��0/�0)6]. The relative phase
error in the adiabatic geometric phase gate is comparable with
the BB1 geometric phase gate in this range of microwave
inhomogeneity. However, we can see that if the microwave
field strength inhomogeneity becomes larger than 10%, which
is the case for most coplanar cavities, the performance of
the adiabatic phase gate exceeds that of the BB1 geometric
phase gate. Small fluctuations of the adiabatic gate are due to
imperfect adiabaticity of the operation, decreasing both for a
stronger microwave field or a slower passage.

The quality of a phase gate can also be characterized by the
infidelity I of the operation, defined as

I = 1 −
∣∣Tr

[
UU−1

0

]∣∣
2

, (2)

where U0 and U are the operators for an idealized and
simulated π phase gate, respectively. Figure 2(b) shows the
infidelities of the three phase gates as functions of ��0/�0.
For the two phase gates using BB1 composite pulses, the
infidelity increases as O[(��0/�0)6]. The infidelity of the
BB1 dynamic phase gate is much smaller than its phase error,
because in the measurement of infidelity only the diagonal
elements of U are considered while the phase error εr is
more directly related to the off-diagonal elements of U . The
oscillations in the infidelity of the adiabatic phase gate are due
to the finite nonadiabaticity of the operation, but only have a
minor effect on the geometric phase. The infidelity of the BB1
geometric gate is comparable with the adiabatic variant within
±10% microwave inhomogeneity, and the adiabatic phase gate
is more robust for larger inhomogeneity.

V. EXPERIMENT

For the experiments, we used a sample with narrow ESR
linewidth (P donors in high-purity 28Si crystal at 8 K) in order
to ensure that all the spins are within the bandwidth of the
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FIG. 3. (Color online) (a) Measured geometric phase γ (black,
dashed) and error εγ (red, solid) as functions of the angle φ that the
spin rotates in the xy plane during the adiabatic sequence. Inset: pulse
sequence for measuring the geometric phase gate. (b) Intensities of
the measured spin-echo signal normalized to corresponding Hahn
echo intensities. (c) Phase error and (d) echo intensity for adiabatic
phase gates of different ts . In panel (c) ts decreases from bottom to top
at φ = 5 × π , whereas in (d) it increases from bottom to top at φ =
6 × π . In these experiments td = 2 μs, maximum of the microwave
amplitude �0 = 0.64 MHz, and initial detuning �0 = 6 MHz. In
panel (a), ts = 6 μs.

adiabatic control sequence. The X-band microwave signal is
generated at a constant frequency, which is then modulated
by the I/Q signals from an arbitrary wave-form generator to
create the required microwave field, such as the one shown in
Fig. 1(c). The complete sequence for measuring the geometric
phase gate consists of an initial (dynamic) π/2 pulse that
creates the spin coherence in the xy plane, the adiabatic control
sequence, and a (dynamic) π pulse that refocuses the random
fluctuations of the environment [Fig. 3(a), inset]. The spin echo
is detected and its phase is determined by quadrature detection,
from which the phase acquired by the electron spin during the
adiabatic phase gate can be deduced.

Figure 3(a) shows the phase of the electron spin γ measured
after an adiabatic phase gate that is designed to apply a
geometric phase φ to the spin, and the corresponding error
defined as εγ = γ − φ. The experimental data follows the
theoretical relation γ = φ very well over a broad range of
φ, from 0 to 20π , which verifies that we have successfully
implemented the adiabatic geometric phase gate to the electron
spins. The intensity of the spin echo is also plotted against φ

in Fig. 3(b) to illustrate the performance of the phase gate.
The echo intensities are normalized to a Hahn echo for the
same time delay. The fact that the echo intensity at φ = 0 is
less than 1 indicates that the adiabatic process is not perfect,
and implies only partial adiabatic following of the whole spin
ensemble. This is partly due to the off-resonance error of
the spins; however, since the ESR linewidth of the spins is
narrower than the bandwidth of the adiabatic control sequence,
the failure of adiabatic following is more generally due to
the nonadiabaticity of the phase gate operation. This also

032326-3



HUA WU et al. PHYSICAL REVIEW A 87, 032326 (2013)

explains why the echo intensity decreases for greater φ: for
a fixed duration of the adiabatic sequence; a greater φ implies
a faster phase variation in the xy plane during td < t < td + ts ,
hence a less adiabatic operation. In addition, because of
the off-resonance error and inhomogeneities in the microwave
field, different spin packets do not follow exactly the same
path during the adiabatic operation, and by the end of
the evolution they will exhibit a spread in the final phase.
While the geometric phase γ is a measurement of the mean
phase of all the spins, the spin echo intensity reflects the
variance of phases between different spins. The reduction of
the echo intensity can thus be attributed to the loss of phase
coherence of the spins. It is also responsible for the increasing
uncertainty in φ [i.e., |εr | in Fig. 3(a)], since the signal-to-noise
ratio of the measurement suffers from the loss of echo
intensity.

The effect of varying ts , which determines the sweep rate of
φ in the xy plane, is shown in Figs. 3(c) and 3(d). In accordance
with the adiabatic condition, the phases measured with shorter
ts contain larger errors. Furthermore, the echo intensity is
reduced for shorter ts implying higher nonadiabaticity. The
dips in the echo intensity traces for ts = 3 μs and 4 μs are
attributed to the nonadiabaticity of the phase gate rather than
noise from the spectrometer, as we have observed similar
features in simulations where the only imperfection introduced
is the microwave field inhomogeneity.

We proceed by comparing the adiabatic phase gate to
nonadiabatic phase gates based on single microwave and BB1
composite pulses. The gates are studied in the range of [0,4π ]
since both the BB1 pulse operation and the nonadiabatic
geometric gate have a natural phase limit of 4π . The pulse
sequences for the nonadiabatic gates are as described above
for the simulations. Limited by the output level of the
signal generator, the range of the linear amplification of
the spectrometer, and our solid-state amplifier, the maximum
amplitude of the microwave field we can apply is about 0.25 G,
corresponding to the length of a π pulse τπ = 700 ns. In
this case, the BB1 pulse sequence for a dynamic π phase
gate is 14 × τπ = 9.8 μs; therefore, we choose ts = 6 μs and
td = 2 μs for the adiabatic sequence so that its total length
τ = 10 μs is comparable to the BB1 pulse sequence.

The measured phase error and echo intensity shown in
Figs. 4(a) and 4(b), respectively, demonstrate that the adiabatic
phase gate outperforms its dynamic counterpart using single
microwave pulses, while its performance is comparable to a
dynamic gate with BB1 composite pulses. This is consistent
with our simulations [Figs. 4(c) and 4(d)], which also predict
that the adiabatic geometric phase gate is more robust than
the simple dynamic gate under B1 inhomogeneity. However,
we note that the measured error of Fig. 4(a) is larger than
the simulated one of Fig. 4(c), explaining why the oscillatory
features of the simulation are not visible in the experimental
data. By contrast, the simulation in Fig. 4(d) reproduces the
main features in the echo intensity of the dynamic phase gate
using single pulses (red, dashed trace), which indicates that
the reduction in the echo intensity is essentially due to the
B1 inhomogeneity. We have performed a similar comparison
of the adiabatic and the nonadiabatic geometric phase gate,
which gives the same qualitative results, i.e., BB1 pulses need
to be employed for the nonadiabatic implementation to obtain
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FIG. 4. (Color online) (a) Measured phase error and (b) echo
intensity for the adiabatic geometric phase gate, and dynamic
phase gates using single microwave and BB1 composite pulses.
All intensities are normalized to unity to enable a more convenient
comparison. The parameters used for the adiabatic sequence of the
experiment are the same as in Fig. 3. (c), (d) Simulation using the
parameters �0 = 1.4 MHz, �0 = 6 MHz, td = 2 μs, and ts = 4 μs.

comparable performance. For the simulations, we assumed
10% inhomogeneity in B1 and no off-resonance effect.

VI. DISCUSSION

In conclusion, we have introduced and demonstrated
single-qubit geometric phase gates using adiabatic control of
electron spins. Experiments and simulations showed that our
adiabatic geometric phase gate is remarkably robust against
inhomogeneities in the microwave field.

A previous theoretical study has suggested that a slow adi-
abatic process is more exposed to environmental decoherence,
mitigating its advantage over nonadiabatic operations [25].
However, in our experiment the gate times for the BB1 and
adiabatic phase gate are similar, and the fidelity of the adiabatic
geometric phase gate is still limited by other imperfections of
the equipment such as the small amplitude of the microwave
field and phase imprecision.

For the current experimental setup its performance is
comparable to the geometric phase gate using composite
nonadiabatic pulses such as BB1 pulses. However, the adi-
abatic phase gate is expected to be advantageous given a
more inhomogeneous microwave field, such as may arise in
coplanar resonators [26], or at higher microwave amplitudes,
for example, achieved using a higher Q-value resonator [27].
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APPENDIX: MICROWAVE PULSE SEQUENCE

The driving microwave field for implementing the adiabatic
geometric phase gate of the electron spin is not uniquely
determined, since any field that evolves adiabatically along
the curve C2 in Fig. 1(a) will induce a geometric phase φ to
the spin. Generally, our proposed sequence can be divided into
four sections with respective durations td ,ts/2,ts/2,td : (i) the
frequency sweep from off resonance to resonance, (ii) the
phase sweep in the xy plane from 0 to φ/2 before the π phase
shift, (iii) the phase sweep from φ/2 to φ after the π phase shift,
and (iv) the frequency sweep from resonance to off resonance.
The total duration of the sequence is then τ = 2td + ts , and
any driving field must satisfy the following conditions:

�x(0) = �y(0) = 0, �x(τ ) = �y(τ ) = 0,

�(t) = 0, for td � t � td + ts ,

�(t) = �̇(t) = 0 at t = td and t = td + ts ,

where the last condition is required for achieving adiabaticity.
In addition, the first derivative of the Hamiltonian with respect
to time must be continuous, and the sequence needs to be sym-
metric about its midpoint for the dynamic phase to fully cancel.

For our study we employed a driving microwave field with
the following frequency profile [cf. Fig. 1(b)]:

ω(t) =

⎧⎪⎨
⎪⎩

ω0 + �0
2

[
cos

(
π t

td

) + 1
]
, 0 � t < td,

ω0, td � t < τ − td ,

ω0 + �0
2

[
cos

(
π t−τ+td

td

) − 1
]
, τ − td � t � τ,

where �0 = ω(0) − ω0 denotes the initial detuning
at t = 0.

In a rotating frame with the frequency of the driving
microwave field, the amplitude and phase of the microwave
drive shown in Fig. 1(b) were given by

�(t) =

⎧⎪⎨
⎪⎩

�0
2

[
1 − cos

(
π t

td

)]
, 0 � t < td,

�0, td � t < τ − td ,

�0
2

[
1 + cos

(
π t−τ+td

td

)]
, τ − td � t � τ

and

ϕ(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, 0 � t < td,

φ

4

[
1 − cos

(
2π t−td

ts

)]
, td � t < τ/2,

φ

4

[
3 − cos

(
2π

t−τ/2
ts

)] + π, τ/2 � t < τ − td ,

0, τ − td � t � τ.

The �x,y(t) in Fig. 1(c) correspond to the actual in-phase
(I) and quadrature (Q) signals applied to the low-frequency
inputs of the utilized (IQ) mixer and are obtained by taking a
combined result of all the traces of Fig. 1(b).
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