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1. INTRODUCTION

We are investigating the design of a quantum multicomputer, a machine con-
sisting of many small quantum computers connected together to cooperatively
solve a single problem [Van Meter et al. 2006; Van Meter III 2006]. Such a
system may overcome the limited capacity of quantum computing technologies
expected to be available in the near term, scaling to levels that dramatically
outperform classical computers on some problems [Nielsen and Chuang 2000;
Shor 1994; Grover 1996; Deutsch and Jozsa 1992].

The main question in considering a multicomputer is whether the system
performance will be acceptable if the implementation problems can be solved.
We focus on distributed implementation of three types of arithmetic circuits
derived from known classical adder circuits [Vedral et al. 1996; Cuccaro et al.
2004; Draper et al. 2006; Ercegovac and Lang 2004]. For many algorithms, no-
tably Shor’s algorithm for factoring large numbers, arithmetic is an important
component, and integer addition is at its core [Shor 1994; Van Meter and Itoh
2005]. Our evaluation criterion is the latency to complete the addition. The
goal is to achieve “reasonable” performance for Shor’s factoring algorithm for
numbers up to a thousand bits.

Our distributed quantum computer must create a shared quantum state be-
tween the separate nodes of our machine. As we perform our computation, this
quantum state evolves and we are dependent on either quantum teleportation
of data qubits or teleportation-based remote execution of quantum gates to
create that shared state [Bennett et al. 1993; Gottesman and Chuang 1999].

The nodes of the machine may be connected in a variety of topologies, which
will influence the efficiency of the algorithm. We concentrate on only three
topologies (shared bus, line, and fully connected) and two additional variants
(2bus, 2fully), constraining our engineering design space and deferring more
complex topology analysis for future work. Our analysis is done attempting to
minimize the required number of qubits in a node while retaining reasonable
performance; we investigate node sizes of one to five logical qubits per node.

In this research we show that:

—teleportation of data is better than teleportation of gates;

—decomposition of teleportation brings big benefits in performance, making a
carry-ripple adder effective even for large problems;

—a linear topology is an adequate network for the foreseeable future; and

—small nodes (only a few logical qubits) perform acceptably, but I/O bandwidth
is critical.

A multicomputer built around these principles and based on solid-state qubit
technology will perform well on Shor’s algorithm. These results collectively
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represent a large step in the design and performance analysis of distributed
quantum computation.

We begin at the foundations, including related work and definitions of some
of the terms we have used in this introduction. Next, we discuss our node and
interconnect architectures, followed by mapping the arithmetic algorithms to
our system. Performance estimates are progressively refined, including show-
ing how decomposing the teleportation operation makes the performance of the
CDKM carry-ripple adder competitive with the carry-lookahead adder. We con-
clude with specific recommendations for a medium-term goal of a modest-size
quantum multicomputer.

2. FOUNDATIONS

A quantum computer is a machine that uses quantum mechanical effects to
achieve potentially large reductions in the computational complexity of certain
tasks [Nielsen and Chuang 2000; Shor 1994; Grover 1996; Deutsch and Jozsa
1992]. Quantum computers exist, but are slow, very small (consisting of only a
few quantum bits, or qubits), and not reliable. Also, they have very limited scal-
ability [Vandersypen et al. 2001; Gulde et al. 2003]. True architectural research
for a large-scale quantum computer can be said to have only just begun [Van
Meter and Oskin 2006; Oskin et al. 2003; Copsey et al. 2003; Kielpinski et al.
2002; Steane 2004; Kim et al. 2005; Balensiefer et al. 2005].

Classically, the best-known algorithm for factoring large numbers is

O(e(nk log2 n)1/3

), where n is the length of the number, in bits, and k = ( 64
9

+ε) log 2,

whereas Shor’s quantum factoring algorithm is polynomial (O(n3) or bet-
ter) [Knuth 1998; Shor 1994; Van Meter and Itoh 2005]. These gains are
achieved by taking advantage of superposition (a quantum system being in
a complex linear combination of states, rather than the single state that is pos-
sible classically), entanglement (loosely speaking, the state of two quanta not
being independent), and interference of the quantum wave functions (analo-
gous to interference in classical wave mechanics). Of these, only entanglement
of pairs of qubits, as the core of quantum teleportation, is directly relevant to
this paper. Otherwise, only a limited familiarity with quantum computing is
required to understand this paper, and we introduce the necessary terminology
and background in this section. Readers interested in more depth are referred
to popular [Williams and Clearwater 1999] and technical [Nielsen and Chuang
2000] texts on the subject.

Teleportation of quantum states (qubits, or quantum data) has been known
for more than a decade [Bennett et al. 1993]. It has been demonstrated ex-
perimentally [Furusawa et al. 1998; Bouwmeester et al. 1997], and has been
suggested as being necessary for moving data long distances within a sin-
gle quantum computer [Oskin et al. 2003]. Teleportation consumes Einstein-
Podolsky-Rosen pairs, or EPR pairs. EPR pairs are pairs of particles or qubits
which are entangled so that actions on one affect the state of the other. EPR pairs
can be created in a variety of ways, including reactions that simultaneously
emit pairs of photons whose characteristics are related and many quantum
gates on two qubits. Entanglement is a continuous, not discrete, phenomenon,
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Fig. 1. Qubus link block diagram.

and several weakly entangled pairs can be used to make one strongly entangled
pair using a process known as purification [Cirac et al. 1999].

2.1 Qubus Entanglement Protocol

Our approach to creating EPR pairs contains no direct qubit-qubit interac-
tions and does not require the use of single photons, instead using laser or
microwave pulses as a probe beam [Nemoto and Munro 2004; Munro et al.
2005]. Two qubits are entangled indirectly through the interaction of qubits
with a common quantum field mode created by the probe beam—a continu-
ous quantum variable—which can be thought of as a communication bus, or
“qubus” [Spiller et al. 2006]. We call the qubus-qubit entanglement protocol
QEP. A block diagram of a qubus link is shown in Figure 1. For our purposes
in the quantum multicomputer, the qubits are likely to be separated by cen-
timeters to meters, though the protocol is expected to work at the micron scale
(within a chip) [Spiller et al. 2006] and at the WAN scale (kilometers) [van
Loock et al. 2006].

For some solid state qubit systems, the interaction with a bus mode takes the
effective form of a cross-Kerr nonlinearity, analogous to that for optical systems,
described by an interaction Hamiltonian of the form

Hint = h̄χσza†a. (1)

When acting for a time t on a qubit-bus system, this interaction effects a rotation
(in phase space) by an angle ±θ on a qubus coherent state, where θ = χt and
the sign depends on the qubit computational basis amplitude. By interacting
the probe beam with the qubit, the probe beam picks up a θ phase shift if it is
in one basis state (e.g., |0〉) and a −θ phase shift if it is in the other (e.g., |1〉).
If the same probe beam interacts with two qubits, it is straighforward to see
that the probe beam acting on the two-qubit states |0〉|1〉 and |1〉|0〉 picks up no
net phase shift because the opposite-sign shifts cancel, while the probe beam
acting on the states |0〉|0〉 and |1〉|1〉 picks up phase shift ±2θ . An appropriate
measurement determines whether the probe beam has been phase shifted (in
effect taking the absolute value of the shift), projecting the qubits into either
an even parity state or an odd parity state. The measurement shows only the
parity of the qubits, not the actual values, leaving them in an entangled state.
This state can be then used as our EPR pair.

2.2 Teleporting Gates and Teleporting Data

To teleport a qubit, one member of the EPR pair is held locally, and the other
by the teleportation receiver. The qubit to be teleported is entangled with the
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Fig. 2. A teleportation circuit (top) and teleported control-NOT (CNOT) gate (bottom). Time flows left

to right, each horizontal line represents a qubit, and each vertical line segment with terminals is a

quantum gate. A segment with a ⊕ terminal is a control-NOT (CNOT). The “meter” box is measurement

of a qubit’s state. The boxes with H, X, and Z in them are various qubit gates. The large box labeled

QEP is the qubus EPR pair generator. (See Nielsen and Chuang for more details on the notation.)

local EPR member, then both of those are measured, which will return 0 or 1
for each qubit. The results of this measurement are transmitted to the receiver,
which then executes gates locally on its member of the EPR pair, conditional on
the measurement results, recreating the (now destroyed) original state at the
destination. The circuit for teleportation is shown in Figure 2.

Gottesman and Chuang showed that teleportation can be used to construct
a control-NOT (CNOT) gate [Gottesman and Chuang 1999]. Their original tele-
ported gate requires two EPR pairs. We use an approach based on parity gates
that consumes only one EPR pair, as shown in Figure 2 [Munro et al. 2005].
Locally, the parity gates can be implemented with two CNOT gates and a mea-
surement (outlined with dotted lines in the figure). Double lines are classical
values that are the output of the measurements; when they are used as a con-
trol line, we decide classically whether to execute the quantum gate, based on
the measurement value. The last gate involves classical communication of the
measurement result between nodes. As shown, this construction is not fault
tolerant; it must be built over fault-tolerant gates. Alternatively, the qubus ap-
proach can be used as the node-internal interconnect. Its natural gate is the
parity gate, and is fault tolerant.

In designing algorithms for our quantum multicomputer, therefore, we have
a choice: when two qubits in different nodes of our multicomputer are required
to interact, we can either move data (qubits) from one node to another, then
perform the shared gate, or we can use a teleported gate directly on the qubits,
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Fig. 3. CCNOT (control-control-NOT, or Toffoli) gate constructions for our architectures.The leftmost

object is the canonical representation of this three-qubit gate. The rightmost construction we use

for the line topology; the middle construction we use for all other topologies. The box with the bar on

the right represents the square root of X (NOT), and the box with the bar on the left its adjoint. The

last gate in the rightmost construction is a SWAP gate, which exchanges the state of two qubits.

without moving them. We will call the data-moving approach teledata and the
teleportation-based gate approach telegate.

For some algorithms, we can use a simple, visual approach to counting the
number of remote operations necessary to execute the algorithm using either
the teledata or telegate approach (see Section 4). For the telegate approach,
we assign a cost of three to each two-node Toffoli (control-control-NOT) gate,
and each three-node Toffoli gate we count as five. The three-node Toffoli gate
should cost more, as in Figure 3, but pipelining of operations across multiple
nodes hides the additional latency. We assign two-node CNOT gates a cost of
one.1

2.3 Distributed Quantum Computation

Early suggestions of distributed quantum computation include Grover [1997],
Cirac et al. [1999], and Steane and Lucas [2000]. A recent paper has proposed
combining the cluster state model with distributed computation [Lim et al.
2005]. Such a distributed system generally requires the capability of trans-
ferring qubit state from one physical representation to another, such as nu-
clear spin ↔ electron spin ↔ photon [Mehring et al. 2003; Jelezko et al. 2004;
Childress et al. 2005].

Yepez [2001] distinguished between distributed computation using entangle-
ment between nodes, which he called type I, and without inter-node entangle-
ment (i.e., classical communication only), which he called type II. Our quantum
multicomputer is a type I quantum computer. Jozsa and Linden showed that
Shor’s algorithm requires entanglement across the full set of qubits, so a type
II quantum computer cannot achieve exponential speedup [Jozsa and Linden
2003; Love and Boghosian 2006]. Much of the work on our multicomputer in-
volves creation and management of that shared entanglement.

Yimsiriwattana and Lomonaco [2004] have discussed a distributed version
of Shor’s algorithm, based on one form of the Beckman-Chari-Devabhaktuni-
Preskill modular exponentiation algorithm [Beckman et al. 1996]. The form
they use depends on complex individual gates, with many control variables,
inducing a large performance penalty compared to using only two- and three-
qubit gates. Their approach is similar to our telegate (Section 2.2), which we

1There are other possible decompositions of the Toffoli gate, but the differences are less than a

factor of two. Which approach is best will depend on the choice of quantum error correction (QEC),

as some are more difficult to implement on encoded qubits [DiVincenzo 1998].
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show to be slower than teledata. They do not consider differences in network
topology, and analyze only circuit size, not depth (time performance).

3. NODE AND INTERCONNECT ARCHITECTURE

A multicomputer [Athas and Seitz 1988] is a constrained form of distributed sys-
tem. All parts of the system are geographically colocated. Short travel distances
(up to a few tens of meters) between nodes reduce latency, simplify coordinated
control of the system, and increase signal fidelity. We assume a regular net-
work topology, a dedicated network environment, and scalability to thousands
of nodes. We concentrate on a homogeneous node technology based on solid-
state qubits, with a qubus interconnect, though our results apply to essentially
any choice of node and interconnect technologies, such as single photon-based
qubit transfer [Wallraff et al. 2004; Matsukevich and Kuzmich 2004].

Future, larger quantum computers will be built on technologies that are in-
herently limited in the number of qubits that can be incorporated into a single
device [Nielsen and Chuang 2000; Spiller et al. 2005; Van Meter and Oskin
2006; ARDA 2004]. The causes of these limitations vary with the specific tech-
nology, and in most cases are poorly understood, but may range from the low
tens to perhaps thousands; integration of the densities we are accustomed to in
the classical world is not even being seriously discussed for most technologies.
For example, flux Josephson junction qubits, which are built using VLSI chip
manufacturing technology, may be 100 microns square; even a large chip would
hold only a few thousand physical qubits [Martinis et al. 2002]. The scalable
ion trap, built with a PC board fabrication process, requires an even larger area
for all of the control structures to manage each trapped atom [Kielpinski et al.
2002]. Quantum error correction (QEC) naturally reduces the number of avail-
able logical (application-level) qubits by a large factor [Shor 1996; Calderbank
and Shor 1996; Steane 2003]. Two levels of the Steane 7-qubit code, for ex-
ample, which encodes a single logical qubit in seven lower-layer qubits, would
impose a 49:1 encoding and storage penalty. Even aggressive management of
the overhead imposed by error correction may still leave an ion trap system
with a surface area of a large fraction of a square meter [Thaker et al. 2006].
Such a system would be difficult to fabricate and operate. Therefore, it makes
sense to examine the utility of a device that can hold only a few logical qubits,
especially if the device can create shared entanglement with another similar
device.

We choose a node technology based on solid-state qubits, such as Josephson-
junction superconducting qubits [Nakamura et al. 1999; Wallraff et al. 2004;
Johansson et al. 2005] or quantum dots [Fujisawa et al. 1998], which will require
a microwave qubus. Each node has many qubits that are private to the node,
and a few transceiver qubits that can communicate with the outside world.
Node size is limited by the number of elements that can practically be built
into a single device, including control structures, external signaling, packaging,
cooling, and shielding constraints. The primary advantages of these solid-state
technologies are their speed, with physical gate times in the low nanoseconds,
and their potential physical scalability based on photolithographic techniques.
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Fig. 4. The five physical topologies analyzed in this paper.

Hollenberg’s group has recently proposed a multicomputer using small ion
traps as the nodes [Oi et al. 2006]. Each node will contain enough physical
qubits to hold one logical qubit plus a few ancillae and a transceiver qubit,
corresponding to our “baseline” case, discussed later. A single photon-based en-
tanglement scheme will be used. They do not explore algorithms, concentrating
on the error correcting parts of the system, and do not discuss the details of
the “optical multiplexer” in their system that corresponds to our interconnect.
This system has the advantage that it could be implemented using existing
technology.

Throughout this paper, qubits and operations on them are understood to be
logical. Although the QEP protocol in theory supports EPR pair creation over
many kilometers, our design goal is a scalable quantum computer in one location
(such as a single lab). We consider a 10nsec classical communication latency,
corresponding roughly to 2m distance between nodes. We find that performance
is insensitive to this number.

We consider five interconnect networks: shared bus, line of nodes, fully
connected, two-transceiver bus (2bus), and two-transceiver fully connected
(2fully) as in Figure 4. For the shared bus, all nodes are connected to a sin-
gle bus. Any two nodes may use the bus to communicate, but it supports only a
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single transaction at a time. For 2bus, each node contains two transceiver qubits
and connects to two independent buses, labeled “A” and “B” in the figure, that
may operate concurrently. In the line topology, each node uses two transceiver
qubits, one to connect to its left-hand neighbor and one to connect to its right-
hand neighbor. Each link operates independently, and all links can be utilized
at the same time, depending on the algorithm. For the fully connected network,
each node has a single transceiver qubit that can connect to any other node
without penalty via some form of classical circuit-switched network, though of
course each transceiver qubit can be involved in only one transaction at a time.
Although we have characterized this network as “fully connected,” implying an
n × n crossbar switch, any nonblocking network, such as a Clos network, will
do, provided that the signal loss through each stage of the network is not signif-
icant [Dally and Towles 2004]. The network can also be optimized to match the
particular traffic pattern, though that is unlikely to be necessary. The 2fully
topology utilizes two transceiver qubits per node for concurrent transfers on
two separate networks, one connecting the transceivers labeled “A” and one
connected the transceivers labeled “B.” Many mappings of qubits to nodes and
gates to bus timeslots are possible; we do not claim the arrangements presented
here are optimal.

The effective topology may be different from the physical topology, depending
on the details of a bus transaction. For example, even if the physical topology
is a bus, the system may behave as if it is fully connected if the actions internal
to a node to complete a bus transaction are much longer than the activities on
the bus itself, allowing the bus to be reallocated quickly to another transaction.
Some technologies may support frequency division multiplexing on the bus,
allowing multiple concurrent transactions.

This research is part of an overall effort to design a scalable quantum
multicomputer. Elsewhere, we have investigated distributed quantum error
correction, determining that two layers of the Steane [[7,1,3]] quantum error
correction code (for a total capacity penalty of 49:1) will protect against error
rates up to ∼ 1% in the teleportation process. We have also found that each
link in the interconnect may be serial, causing only a small penalty in per-
formance and reliability, while substantially simplifying the hardware [Van
Meter et al. 2007; Van Meter III 2006]. Those results help constrain the hard-
ware of the quantum multicomputer; in this paper, we analyze the software and
performance.

4. ALGORITHM

The introduction of Shor’s factoring algorithm spurred interest in arithmetic
circuits for quantum computers. Several groups almost immediately began in-
vestigating the modular exponentiation phase of the algorithm [Vedral et al.
1996; Beckman et al. 1996; Miquel et al. 1996]. All of these early algorithms
used various types of carry-ripple adders, which are O(n) in both depth and
gate complexity, and composed modular multiplication and exponentiation in
the most straightforward fashion. Shortly thereafter, other types of adders
and various other optimizations were introduced [Gossett 1998; Draper 2000;
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Cleve and Watrous 2000; Beauregard 2003; Zalka 1998]. Some of these cir-
cuits operate on Fourier-transformed numbers [Beauregard 2003]; while these
circuits use fewer qubits than the original Vedral-Barenco-Ekert (VBE) style
of carry-ripple adder [Vedral et al. 1996], implementing the small rotations
that are necessary for the Fourier transform may be difficult on QEC-encoded
qubits. Zalka examined the Schönhage-Strassen FFT-based multiplication al-
gorithm and found it to be faster than the “obvious” approach only for factor-
ing numbers larger than 8 kilobits [Zalka 1998]; our own analysis places the
crossover at closer to 32kb. Some of these approaches are evaluated in more
detail in our previous work [Van Meter and Itoh 2005]. In this paper, we choose
to concentrate on integer addition only, as the fundamental building block of
arithmetic.

Recently, several new addition circuits have been introduced, some based on
standard classical techniques [Ercegovac and Lang 2004]. The Cuccaro-Draper-
Kutin-Moulton (CDKM) carry-ripple adder [Cuccaro et al. 2004] is faster than
the original VBE adder and uses fewer qubits. The advantage of the Draper
Fourier-based adder was its use of fewer qubits; the development of CDKM
makes the Fourier adder less attractive due to its complex implementation.
Takahashi and Kunihiro [2005], working from CDKM, have eliminated the
need for ancillae, at the expense of a much deeper (but still O(n)) circuit. The
carry-lookahead adder [Draper et al. 2006] is O(log n) depth and O(n) gate
complexity. Our own carry-select and conditional-sum adders [Van Meter and
Itoh 2005] are O(

√
n) and O(log n) circuit depth, respectively, but use more

ancillae. The definitions of these algorithms ignore communications costs; in
most real systems, distant qubits cannot interact directly, and this impacts
performance. The carry-lookahead adder and Takahashi-Kunihiro adder do not
present obvious mappings onto architectures with such limitations.

From among these, we have chosen to evaluate three different addition algo-
rithms: VBE [Vedral et al. 1996], the Cuccaro-Draper-Kutin-Moulton (CDKM)
carry-ripple adder [Cuccaro et al. 2004], and the carry-lookahead adder [Draper
et al. 2006]. In this section we discuss the adders without regard to the network
topology; the following section presents numeric values for different topologies
and gate timings. None of these circuits has been optimized for a system in
which accessing some qubits is very fast and accessing others is very slow, as in
our multicomputer; it is certainly possible that faster circuits for our proposed
system will be found.

4.1 Carry-Ripple Adders

Figure 5 shows a two-qubit VBE carry-ripple adder [Vedral et al. 1996] in its
monolithic (top) and distributed (bottom) forms. Each horizontal line represents
a qubit; the ket notation is omitted for clarity. The QEP block creates an EPR
pair. The dashed boxes delineate the teleportation circuit, which is assumed
to be perfect. This moves the qubit |c0〉 from node A to node B. |c0〉 is used in
computation at node B, then moved back to node A via a similar teleportation to
complete the computation. The two qubits |t0〉 and |t1〉 are used as transceiver
qubits, and are reinitialized as part of the QEP subcircuit.
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Fig. 5. Details of a distributed 2-qubit VBE adder. The top circuit is the monolithic form, and the

bottom circuit is the distributed form using the teledata method. The solid box (QEP) is the qubus

EPR pair generator; the circuits in dashed boxes are standard quantum teleportation circuits. The

“meter” box is measurement of a qubit’s state. The boxes with H, X, and Z in them are various

single-qubit gates.

Figure 6 shows a larger VBE adder circuit and illustrates a visual method
for comparing telegate and teledata. For telegate, we can draw a line across
the circuit, with the number of gates (vertical line segments) crossed showing
our cost. For teledata, the line must not cross gates, instead crossing the qubit
lines. The number of such crossings is the number of teleportations required.
This approach works well for analyzing the VBE and CDKM adders, but care
must be taken with the carry-lookahead adder, because it uses long-distance
gates that may be between, for example, nodes 1 and 3.

The VBE adder latency to add two numbers on an m-node machine using the
teledata method is 2m − 2 teleportations plus the circuit cost. For the telegate
approach, using the five-gate breakdown for CCNOT, as in Figure 3, would re-
quire three teleported two-qubit gates to form a CCNOT. Therefore, implementing
telegate, the latency is 7m − 7 gate teleportations, or 3.5x the cost.

For the CDKM carry-ripple adder [Cuccaro et al. 2004], which more ag-
gressively reuses data space, teledata requires a minimum of six movements,
whereas telegate requires two CCNOTs and three CNOTs, or a total of nine two-
qubit gates, as shown in Figure 7. The CDKM adder pipelines extremely well,
so the actual latency penalty for more than two nodes is only 2m + 2 data
teleportations, or 6m gate teleportations, when there is no contention for the
inter-node links, as in our line and fully connected topologies. The bus topology
performance is limited by contention for access to the interconnect.

4.2 Carry-Lookahead

Analyzing the carry-lookahead adder is more complex, as its structure is not
regular, but grows more intertwined toward the middle bits. Gate scheduling is
also variable, and the required concurrency level is high. The latency is O(log n),

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 4, Article 17, Pub. date: January 2008.



17:12 • R. Van Meter et al.

Fig. 6. Visual approach to determining relative cost of teleporting data versus teleporting gates

for a VBE adder. The upper, dashed line shows the division between two nodes (A and B) using data

teleportation. The circles show where the algorithm will need to teleport data. The lower, dotted

line shows the division using gate teleportation (nodes B and C). The circles show where teleported

gates must occur. Note that two of these three are CCNOT gates, which may entail multiple two-qubit

gates in actual implementation.

making it one of the fastest forms of adder for large numbers [Draper et al. 2006;
Van Meter and Itoh 2005; Ercegovac and Lang 2004].

Let us look at the performance in a monolithic quantum computer, for n a
power of two. Based on Table I from Draper et al. [2006], for n = 2k , the circuit
depth of 4k + 3 Toffoli gates is 19, 31, and 43 Toffoli gates, for 16, 128, and
1,024 bits, respectively. We assume a straightforward mapping of the circuit
to the distributed architecture. We assign most nodes four logical qubits (|ai〉,
|bi〉, |ci〉, and one temporary qubit used as part of the carry propagation). In the
next section, we see that the transceiver qubits are the bottleneck; we cannot
actually achieve this 4k + 3 latency.

5. PERFORMANCE

The modular exponentiation to run Shor’s factoring algorithm on a 1,024-bit
number requires approximately 2.8 million calls to the integer adder [Van Meter
and Itoh 2005]. With a 100 μsec adder, that will require about five minutes;
with a 1 msec adder, it will take under an hour. Even a system two to three
orders of magnitude slower than this will have attractive performance, provided
that error correction can sustain the system state for that long, and that the
system can be built and operated economically. This section presents numerical
estimates of adder performance which show that this criterion is easily met by a
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Fig. 7. Visual approach to determining relative cost of teleporting data versus teleporting gates

for a CDKM adder. The upper, dashed line shows the division between two nodes using data tele-

portation. The circles show where the algorithm will need to teleport data. The lower, dotted line

shows the division using gate teleportation. The circles show where teleported gates must occur.

Note that two of these five are CCNOT gates, which may entail multiple two-qubit gates in actual

implementation.

quantum multicomputer under a variety of assumptions about logical operation
times, providing plenty of headroom for quantum error correction.

5.1 Initial Estimate

Our initial results are shown in Table I. Units are in number of complete telepor-
tations, treating teleportation and EPR pair generation as a single block, and
assuming zero cost for local gates. In the following subsections these assump-
tions are revisited. We show three approaches (baseline, telegate, and teledata)
and three adder algorithms (VBE, CDKM, carry-lookahead) for five networks
(bus, 2bus, line, fully, 2fully) and three problem sizes (16, 128, and 1024 bits).
In the baseline case, each node contains only a single logical qubit; gates are
therefore executed using the telegate approach. For the telegate and teledata
columns, we chose node sizes to suit the algorithms: two, three, and four qubits
per node for the CDKM, VBE, and carry-lookahead adders, respectively, when
using telegate, and three, four and five qubits when using teledata.

The VBE adder, although larger than CDKM and slower on any monolithic
computer when local gate times are considered, is faster in a distributed en-
vironment. The VBE adder exhibits a large (3.5x) performance gain by using
the teledata method instead of telegate. For teledata, the performance is inde-
pendent of the network topology, because only a single operation is required at
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Table I.

Estimate of latency necessary to execute various adder circuits on different topologies of

quantum multicomputer, assuming monolithic teleportation blocks (Section 5.1). Units are in

number of teleportation blocks, including EPR pair creation (bus transaction), local gates and

classical communication. Low numbers are faster (better). Size, length of the numbers to be

added, in bits. Lower numbers are faster (better). “2F” denotes 2fully

algo. size Baseline Telegate Teledata

bus line fully bus 2bus line fully 2F bus 2bus line fully 2F

VBE 16 360 305 182 105 105 105 105 105 30 30 30 30 30

128 3048 2545 1526 889 889 889 889 889 254 254 254 254 254

1024 24552 20465 12278 7161 7161 7161 7161 7161 2046 2046 2046 2046 2046

CDKM 16 232 160 160 138 96 96 97 96 90 60 34 90 34

128 1912 1280 1280 1146 768 768 768 768 762 508 258 762 258

1024 15352 10240 10240 9210 6144 6144 6145 6144 6138 4092 2050 6138 2050

Carry- 16 644 N/A 99 444 222 N/A 136 135 260 178 N/A 96 56

look- 128 6557 N/A 159 4901 2451 N/A 256 255 3176 2028 N/A 192 104

ahead 1024 54806 N/A 219 41502 20751 N/A 376 375 27260 17206 N/A 288 152

a time, moving a qubit to a neighboring node. The CDKM adder also commu-
nicates only with nearest neighbors, but performs more transfers. The single
bus configuration is almost 3x slower than the line topology. On a line, in most
time slots, three concurrent transfers are conducted (e.g., between nodes 1 → 2,
3 → 2, and 3 → 4).

An unanticipated but intuitive result is that the performance of the carry-
lookahead adder is better in the baseline case than the telegate case, for the fully
connected network. This is due to the limitation of having a single transceiver
qubit per node. Putting more qubits in a node increases contention for the
transceiver qubit, and reduces performance even though the absolute number
of gates that must be executed via teleportation has been reduced. The carry-
lookahead adder is easily seen to be inappropriate for the line architecture,
since the carry-lookahead requires long-distance gates to propagate carry in-
formation quickly. Our numbers also show that the carry-lookahead adder is
not a good match for a bus architecture, despite the favorable long-distance
transport, again because of excessive contention for the bus.

For telegate, performing some adjustments to eliminate intra-node gates, we
find 8n−9k−8 total Toffoli gates that need arguments that are originally stored
on three separate nodes, plus n − 2 two-node CNOTs. For the bus case, which
allows no concurrency, this is our final cost. For the fully-connected network,
we find a depth of 8k − 10 three-node CCNOTs, 8 two-node CCNOTs, and 1 CNOT.
These must be multiplied by the appropriate CCNOT breakdown. For the teledata
fully connected case, each three-node Toffoli gate requires four teleportations
(in and out for each of two variables). For the 2fully network, the latency of the
three-node Toffolis is halved, but the two-node Toffolis do not benefit, giving us
a final cost of slightly over half the fully connected network cost.

5.2 Improved Performance

The analysis in Section 5.1 assumed that a teleportation operation is a mono-
lithic unit. However, Figure 5 makes it clear that a teleportation actually
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Table II.

Estimated latency to execute various adders on different topologies, for decomposed teleportation

blocks (Section 5.2), assuming classical communication and local gates have zero cost. Units are

in EPR pair creation times. “2F” denotes 2fully

algo. size Baseline Telegate Teledata

bus line fully bus 2bus line fully 2F bus 2bus line fully 2F

VBE 16 360 16 16 105 53 7 14 7 30 15 2 4 2

128 3048 16 16 889 445 7 14 7 254 127 2 4 2

1024 24552 16 16 7161 3581 7 14 7 2046 1023 2 4 2

CDKM 16 232 21 19 135 68 11 18 9 90 60 6 12 6

128 1912 21 19 1146 573 11 18 9 762 508 6 12 6

1024 15352 21 19 9210 4605 11 18 9 6138 4092 6 12 6

Carry- 16 644 N/A 99 444 222 N/A 89 45 260 178 N/A 96 56

look- 128 6557 N/A 159 4901 2451 N/A 149 75 3176 2028 N/A 192 104

ahead 1024 54806 N/A 219 41502 20751 N/A 209 105 27260 17206 N/A 288 152

consists of several phases. The first portion is the creation of the entangled
EPR pair. The second portion is local computation and measurement at the
sending node, followed by classical communication between nodes, then local
operations at the receiving node. The EPR pair creation is not data-dependent;
it can be done in advance, as resources (bus time slots, qubits) become available,
for both telegate and teledata.

Our initial execution time model treats local gates and classical communica-
tion as free, assuming that EPR pair creation is the most expensive portion of
the computation. For example, for the teledata VBE adder on a linear topology,
all of the EPR pairs needed can be created in two time steps at the beginning
of the computation. The execution time would therefore be 2, constant for all n.
Table II shows the performance under this assumption. The performance of the
carry-lookahead adder does not change, as the bottleneck link is busy full-time
creating EPR pairs.

This model gives a misleading picture of performance once EPR pair creation
is decoupled from the teleportation sequence. When the cost of the teleportation
itself or of local gates exceeds ∼ 1/n of the cost of the EPR pair generation, the
simplistic model breaks down; in the next subsection, we examine the perfor-
mance with a more realistic model.

5.3 Detailed Estimate

To create Figures 8–10, we make assumptions about the execution time of vari-
ous operations. Classical communication between nodes is 10nsec. A CCNOT (Tof-
foli) gate on encoded qubits takes 50nsec, CNOT 10nsec, and NOT 1nsec. These
numbers can be considered realistic but optimistic for a technology with phys-
ical gate times in the low nanoseconds; for quantum error correction-encoded
solid-state systems, the bottleneck is likely to be the time for qubit initializa-
tion or reliable single-shot measurement, which is still being designed (see the
references in [Van Meter and Oskin 2006]).

We vary the EPR pair creation time from 10nsec to 1280nsec. This creation
process is influenced by the choice of parallel or serial bus and the cycle time of
an optical homodyne detector. Photodetectors may be inherently fast, but their
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Fig. 8. (Telegate) Performance of different adders on three different networks, one fully connected

with a single link and one with two links per node (2fully), and one line configuration. In this graph,

we vary the latency to create a high-quality EPR pair and the length of the numbers we are adding.

Classical communication time is assumed to be 10nsec, Toffoli gate time 50nsec, CNOT gate time

10nsec. The left-hand graph of each pair plots adder execution time (vertical axis) against EPR pair

creation time and number length. In the right-hand graph of each pair, the hatched area indicates

areas where carry-lookahead is the fastest, the diagonally lined area indicates CDKM carry-ripple,

and the solid area indicates VBE carry-ripple. The performance of the carry-lookahead adder is

very sensitive to the EPR pair creation time. If EPR pair creation time is low, the carry-lookahead

adder is very fast; if creation time is high, the adder is very slow.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 4, Article 17, Pub. date: January 2008.



Arithmetic on a Distributed-Memory Multicomputer • 17:17

 1024 512 256 128 64 32 16 10

 100

 1000

 300000

 200000

 100000

 0

adder latency (ns)
Fully Connected Network

      lookahead
        CDKM

        VBE

Length of numbers to be added (bits)

EPR pair creation

time (ns)

adder latency (ns)

 10

 100

 1000

1024512256128643216

E
P

R
 p

a
ir
 c

re
a
ti
o
n
 t

im
e
 (

n
s
)

Length of numbers to be added (bits)

Fully Connected Network

 1024 512 256 128 64 32 16 10

 100

 1000

 300000

 200000

 100000

 0

adder latency (ns)

2Fully Connected Network

      lookahead
        CDKM

        VBE

Length of numbers to be added (bits)
EPR pair creation

time (ns)

adder latency (ns)

 10

 100

 1000

1024512256128643216

E
P

R
 p

a
ir
 c

re
a
ti
o
n
 t

im
e
 (

n
s
)

Length of numbers to be added (bits)

2Fully Connected Network

 1024 512 256 128 64 32 16 10

 100

 1000

 300000

 200000

 100000

 0

adder latency (ns)
Line Network

          CDKM
          VBE

Length of numbers to be added (bits)

EPR pair creation

time (ns)

adder latency (ns)

 10

 100

 1000

1024512256128643216

E
P

R
 p

a
ir
 c

re
a
ti
o
n
 t
im

e
 (

n
s
)

Length of numbers to be added (bits)

Line Network

Fig. 9. (Teledata) Performance of different adders on three different networks, one fully connected

with a single link and one with two links per node (2fully), and one line configuration. In this

graph, we vary the latency to create a high-quality EPR pair and the length of the numbers we

are adding. Classical communication time is assumed to be 10nsec, Toffoli gate time 50nsec, CNOT

gate time 10nsec. In the right-hand graph of each pair, the hatched area indicates areas where

carry-lookahead is the fastest, the diagonally lined indicates CDKM carry-ripple, and the solid

area indicates VBE carry-ripple. The performance of the carry-lookahead adder is very sensitive

to the EPR pair creation time. If EPR pair creation time is low, the carry-lookahead adder is very

fast; if creation time is high, the adder is very slow.

performance is limited by surrounding electronics [Armen et al. 2002; Stockton
et al. 2002]. Final performance may be faster or slower than our model, but the
range of values we have analyzed is broad enough to demonstrate clearly the
important trends.

Figures 8 and 9 show, top to bottom, the fully, 2fully, and line networks for the
telegate and teledata methods. We plot adder time against EPR pair creation
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Fig. 10. (Teledata) Comparison of CDKM on a line network with carry-lookahead on a 2fully

network. These are the “front” and “back” cross-sections of Figure 9.

time and the length of the numbers to be added. The left hand plot shows the
shape of the surfaces, with the z axis being latency to complete the addition.
The right hand plot, with the same x and y axes, shows the regions in which
each type of adder is the fastest.

By examining the vertical extent of the curves in the figures, we see that the
teledata method is faster than telegate for all of the conditions presented, but
especially for the carry-lookahead adder. The figures also show that the carry-
lookahead adder is very dependent on EPR pair creation time, while neither
carry-ripple adder is. In Figure 10 we show this in more detail. For fast (10nsec)
EPR pair creation, the carry-lookahead adder is faster for all problem sizes. For
slow (1280nsec) EPR pair creation time, carry-lookahead is not faster until we
reach 512 bits.

Although we do not include graphs, we have also varied the time for classical
communication and the other types of gates. The performance of an adder is
fairly insensitive to these changes; it is dominated by the relationship between
CCNOT and EPR pair creation times.

5.4 Comparison to a Monolithic Machine

Our work shows the possibility of extending the size of problems that can suc-
cessfully attacked using a given quantum computing technology, surpassing
the limitations of a single, monolithic quantum computer by aggregating many
small quantum computers into one large system. Therefore, the common multi-
processing performance analysis approach of determining the speedup achieved
by adding nodes to the system is not appropriate. Instead, let us ask what per-
formance penalty we pay by performing the computation on a multicomputer
relative to the performance of a monolithic computer, if a large enough one could
be built.

Let us examine the case of increasing node sizes connected in a linear net-
work, using a CDKM carry-ripple adder. So far, we have assumed that an n-bit
addition is performed on a system of n nodes (or 2n for the baseline case). Let us
now allow the number of nodes to be m, m < n. If tQEP is our EPR pair creation
time, tCCNOT is the CCNOT time, and tTELE is our teleportation time, including
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one measurement, classical communication time between two nodes, and three
local single-qubit gates (all for logical qubits), then the total execution time on
the multicomputer is approximately

2tQEP + (m − 1)tTELE + (2n − 1)tCCNOT (2)

compared to (2n−1)tCCNOT on a monolithic machine. As n grows and as m → n,
the performance penalty goes to ∼ tTELE+2tCCNOT

2tCCNOT
. For our multicomputer environ-

ment, the cost of a logical CCNOT is far higher than the classical communications
cost. For small n, the QEP time may dominate, but it quickly becomes an unim-
portant factor as n grows. Overall, the performance penalty is small, and the
capabilities improve, so we conclude that the multicomputer is a desirable ar-
chitecture.

For the carry-lookahead adder on the fully connected and 2fully networks,
as noted above, the analysis is more difficult because the transceiver qubits are
often the bottleneck in the system. We compare only the fixed node size of five
logical qubits and the 2fully network to a monolithic machine of approximately
4n logical qubits. In this configuration, the performance penalty is significant;
2× for an EPR pair creation time of 10nsec, and 25× for an EPR pair cre-
ation time of 1280nsec, almost independent of n, as both the computational
circuit depth and the communication overhead scale with O(log n). Of course,
the carry-lookahead adder in general is favorable for very large n, so despite
the apparently large performance penalty it may still be the preferred choice
in that case.

6. CONCLUSION

A quantum multicomputer is a system composed of multiple nodes, each of
which is a small quantum computer capable of creating entanglement shared
with other nodes via a qubus. We have evaluated the performance of arithmetic
circuits on a quantum multicomputer for different problem sizes, interconnect
topologies, and gate timings. Although we have assumed that the interconnect
is based on the qubus entanglement protocol creation of EPR pairs, our anal-
ysis, especially Table I, applies equally well to any two-level structure with
low-latency local operations and high-latency long-distance operations. The de-
tails of the cost depend on the interconnect topology, number of transceiver
qubits, and the chosen breakdown for CCNOT. More important than actual gate
times for this analysis is gate time ratios. The time values presented here are
reasonable for solid-state qubits under optimistic assumptions about advances
in the underlying technology. Applying our results to slower technologies (or
the same technology using more layers of quantum error correction) is a simple
matter of scaling by the appropriate clock speed and storage requirements.

We find that the teledata method is faster than the telegate method, that
separating the actual data teleportation from the necessary EPR pair creation
allows a carry-ripple adder to be efficient for large problems, and that a linear
network topology is adequate for up to a hundred nodes or more, depending
on the cost ratio of EPR pair creation to local gates. For very large systems,
switching interconnects, which are well understood in the optical domain [Kim
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et al. 2003; Marchand et al. 1997; Szymanski and Hinton 1995], may become
necessary, though we recommend deferring adding switching due to the com-
plexity and the inherent signal loss; switching time in such systems also must
be considered.

Our results show that node size, interconnect topology, distributed gate ap-
proach (teledata v. telegate), and choice of adder affect overall performance in
sometimes unexpected ways. Increasing the number of logical qubits per node,
for example, reduces the total number of interconnect transfers but concen-
trates them in fewer places, causing contention for access for some algorithms.
For the specific recommendation of a linear network and a carry-ripple adder,
larger nodes exact no penalty but produce no benefit. Therefore, increasing
node size is not, in general, favorable unless node I/O bandwidth increases
proportionally; we recommend keeping the node size small and fixed for the
foreseeable future.

Our data presents a clear path forward. We recommend pursuing a node ar-
chitecture consisting of only a few logical qubits and initially two transceiver
(quantum I/O) qubits. This will allow construction of a linear network, which
will perform adequately with a carry-ripple adder up to moderately large sys-
tems. Engineering emphasis should be placed on supporting more transceiver
qubits in each node, which can be used to parallelize transfers, decrease the
network diameter, and provide fault tolerance. Significant effort is warranted
on minimizing the key parameter of EPR pair creation time. Only once these
avenues have been exhausted should the node size be increased and a switched
optical network introduced. This approach should lead to the design of a viable
quantum multicomputer.
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