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Coherent control via weak measurements in 31P single-atom electron and nuclear spin qubits
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The understanding of weak measurements and interaction-free measurements has greatly expanded the
conceptual and experimental toolbox to explore the quantum world. Here we demonstrate single-shot variable-
strength weak measurements of the electron and nuclear spin states of a 31P single-atom donor in silicon. We
first show how the partial collapse of the nuclear spin due to measurement can be used to coherently rotate
the spin to a desired pure state. We explicitly demonstrate that phase coherence is preserved with high fidelity
throughout multiple sequential single-shot weak measurements and that the partial state collapse can be reversed.
Second, we use the relation between measurement strength and perturbation of the nuclear state as a physical
meter to extract the tunnel rates between the 31P donor and a nearby electron reservoir from data conditioned on
observing no tunneling events. Our experiments open avenues to measurement-based state preparation, steering
and feedback protocols for spin systems in the solid state, and highlight the fundamental connection between
information gain and state modification in quantum mechanics.
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I. INTRODUCTION

The quantum measurement postulate, as found in quan-
tum mechanics textbooks, implicitly describes projective (von
Neumann) measurements, where a measurement apparatus
is coupled to a quantum system and, upon performing the
measurement, returns a unique value ak for some observable Â

of the quantum system. If the system was initially in the state
|ψ〉, the act of measurement leaves it in the state |φk〉, the
eigenstate of the observable Â with eigenvalue ak . The non-
deterministic and nonunitary process through which the act
of measurement transforms the initial state |ψ〉 into the final
state |φk〉 is known as “wave function collapse” and has been
the subject of a century of debate and controversy.

However, as was already appreciated by von Neumann [1],
the projective measurement is only a limiting case. One can
also have a detector which is only partially correlated with
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some observable of the quantum system and therefore returns
only partial information on the system state. Accordingly, the
wave function is not fully projected onto an eigenstate and
is only weakly disturbed by the measurement process. The
implications and applications of such “weak measurements”
and corresponding partial collapse of the quantum state have
gained considerable attention, especially in the context of
quantum information processing. Recent experiments on su-
perconducting qubits have demonstrated partial wave function
collapse [2], measurement reversal [3], stabilized Rabi oscilla-
tions using quantum feedback [4], direct observation of quan-
tum trajectories [5,6], reduction of decoherence via “uncol-
lapsing” [7], and observation of the back-action steering from
a variable-strength measurement [8,9]. Weak measurements
have also been demonstrated with nitrogen-vacancy centers in
diamond [10].

Here we describe how to apply the principles of weak
quantum measurements to the electron and nuclear spin states
of an individual 31P donor atom in silicon. In the context of
quantum measurement, the 31P atom provides access to many
key features related, e.g., to negative-result measurements
[11] and quantum steering [12,13]. In particular, we show that
weak single-shot measurements via the electron spin can be
used to phase-coherently control the state of the 31P nuclear
spin and that it is possible to preserve phase coherence with
high fidelity through multiple sequential measurement and
control steps. This highlights the potential for measurement-
based control in this highly coherent coupled qubit system
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FIG. 1. (a) Scanning electron micrograph of a device identical
to the one used in the experiment. A broadband microwave antenna
is used to provide both nuclear and electron spin resonance pulses,
and a single-electron transistor (SET) detects electron tunneling
events in real time. (b) Energy diagram of the electron-nuclear spin
system, with labels for the transition frequencies relevant to the
present experiments. (c) Pulse sequence for nuclear spin initialization
and variable-strength measurement. The solid line represents the
combined effect of the voltage of the electrostatic gates VDG adjusting
the chemical potential of the donor electron with respect to the SET
island, schematically shown on the left. Blue and red boxes represent
ESR pulses at νe1 and νe2, respectively, and yellow boxes represent
NMR pulses at νn. The semitransparent boxes are needed only for
tomography (σx and σy components). They are, from left to right, two
refocusing pulses (around the y axis) and one phase-modulated pulse
to define the tomography axis. Timing and pulse lengths are not to
scale. Single weak measurements (first column in Fig. 2) require only
the first θ pulse and electron readout. (d) Pulse sequence used for
nuclear spin readout. An electron readout step initializes the electron
spin |↓〉. An electron spin π pulse is applied at frequency νe2, which
flips the electron spin only if the nuclear spin is |⇑〉. The nuclear
state is assigned |⇑〉 if a majority of |↑〉 electrons are detected after
25 repetitions.

and opens avenues to measurement-based state preparation,
Einstein-Podolsky-Rosen (EPR) steering, and feedback pro-
tocols. We also show how the tunneling rate of the electron
to a nearby electron reservoir can be extracted from a data set
conditioned on having no tunneling events, in a spirit similar
to the Elitzur-Vaidman bomb-testing protocol [14].

II. EXPERIMENT

A. Device

Figure 1(a) shows a scanning electron microscope image
of our device, which is fabricated on an isotopically enriched
28Si substrate [15] and where the 31P atom is introduced via

ion implantation [16]. This system contains two natural qubits
(the electron spin, with S = 1/2 and basis states |↑〉, |↓〉, and
the 31P nucleus, with spin I = 1/2 and basis states |⇑〉, |⇓〉)
that exhibit extremely long coherence times [17–19] and
high quantum gate fidelities [20,21] and can be efficiently
entangled with each other [22,23].

The quantum state of the 31P system is accessible through
the measurement of the z projection of the electron spin,
where z is the axis along which a strong external magnetic
field B0 (≈1.5 T in the present experiment) is applied. The
donor is placed in close proximity (≈20–30 nm [24,25]) to a
cold (T ≈ 100 mK) electron reservoir. Under suitable biasing
conditions, the donor-bound electron can tunnel into the cold
reservoir if and only if it is in the excited |↑〉 state. The
positively charged donor left behind after this tunneling event
shifts the bias point of a nearby single-electron transistor
(SET) and switches it to a high-conductance state. The SET
current then flows until another electron tunnels into the donor
from the reservoir, initializing it again to the ground state.
Conversely, a |↓〉 electron cannot escape the donor, leaving
the SET in a near-zero conductance state. This spin-dependent
tunneling process [26–28] thus gives rise to a single-shot mea-
surement, with fidelity in excess of 90% [28]. This mechanism
provides a near-ideal negative-result measurement for the |↓〉
state, which is identified by the absence of a signal in the SET
current. Importantly, the electron spin is always initialized |↓〉
after the readout.

The 31P nuclear spin couples to the electron through the
hyperfine interaction AI · S, with A ≈ 97 MHz in this specific
device [19]. As a consequence, the system can have two
possible electron spin resonance (ESR) frequencies, νe1,2 =
γeB0 ∓ A/2 [Fig. 1(b)], where γe ≈ 28 GHz/T is the electron
gyromagnetic ratio. Nuclear readout [Fig. 1(d)] [29] proceeds
by initializing the |↓〉 state and applying a microwave π

pulse at, e.g., νe2, where subsequently measuring the electron
|↑〉 state indicates that the nuclear spin state was |⇑〉. Since
γeB0 
 A, the hyperfine interaction can be approximated
with AIzSz. As this commutes with Iz, the readout of the z

projection of the nuclear spin is of quantum nondemolition
type [30] and can be repeated to achieve a readout fidelity
approaching 99.9% [29], well beyond that of a single-shot
electron readout. For the (strong) nuclear spin readouts in this
paper we perform 25 electron π pulse and readout cycles for
each nuclear spin readout.

B. Experimental protocol

The use of an electron π pulse for the nuclear readout is
just the limiting case, where one gains maximum information
about the nuclear spin state. Here, we explore the more
general case where the electron rotation angle is θ �= π , which
causes the subsequent electron readout to provide only partial
information on the nuclear state. This realizes a novel tunable
weak measurement, with strength controlled by the electron
rotation angle θ . We show below that, as a result of a weak
nuclear measurement conditioned on measuring electron |↓〉,
the nuclear state can be coherently rotated to an arbitrary
pure state. This could be extended to provide an interesting
implementation of EPR steering [12,13] with spins in the solid
state (see Appendix C for more details on EPR steering).
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Let us assume that the nuclear spin is initially in the state
|ψn0〉 = (|⇓〉 + |⇑〉)/

√
2, while the electron spin is initial-

ized in its ground state |↓〉. We then apply a microwave
pulse at frequency νe2 to produce a rotation by an angle
θ of the electron spin, conditioned on the nuclear spin
being in the |⇑〉 state. The full electron-nuclear state be-
comes |�en〉 = [|⇓↓〉 + cos(θ/2)|⇑↓〉 − sin(θ/2)|⇑↑〉]/√2.
A readout of the electron spin state will produce |↑〉 with prob-
ability P↑ = sin2(θ/2)/2 and leave the nuclear spin state |⇑〉.
More interestingly, with probability P↓ = [1 + cos2(θ/2)]/2
the electron readout will produce |↓〉 and leave the nu-
clear spin in a coherent superposition state |ψn〉 = [|⇑〉 +
cos(θ/2)|⇓〉]/

√
1 + cos2(θ/2), which has therefore been co-

herently rotated from the original state |ψn0〉 to the pure state

|ψn〉 using only ESR pulses and electron spin measurements.
The rotation is probabilistic in the sense that it can fail (if the
outcome of the electron readout is |↑〉), but in the case of a
success (heralded by the |↓〉 electron readout) the end state is
fully deterministic.

A more complete description of the process is obtained
through a density matrix formalism (for more details, see
Appendix A). The initial nuclear spin state is

ρ0 = |ψn0〉〈ψn0| = 1

2

[
1 1
1 1

]
. (1)

After the θ rotation of the electron spin (initially |↓〉) condi-
tioned on the |⇑〉 nuclear state and a |↓〉 electron readout, the
nuclear spin is left in the state

ρ(θ ) = 1

1 + cos2(θ/2)

[
cos2(θ/2) cos(θ/2)
cos(θ/2) 1

]
, (2)

which notably is a pure state for all values of θ . This readily generalizes to multiple electron rotation and measurement steps.
For example, after two sequential applications of the sequence, the nuclear spin state is (conditional on reading |↓〉 at both steps)

ρ(θ1, θ2) = 1

1 + cos2(θ1/2) cos2(θ2/2)

[
cos2(θ1/2) cos2(θ2/2) cos(θ1/2) cos(θ2/2)

cos(θ1/2) cos(θ2/2) 1

]
, (3)

assuming phase coherence is preserved at the intermediate electron readout step.
An interesting scenario appears if the second electron rotation is applied at νe1 instead of νe2, so that the rotation is conditioned

on the nuclear |⇓〉 state. Calling φ the rotation angle of the microwave pulse at νe1, the final state becomes

ρ(θ, φ) = 1

cos2(φ/2) + cos2(θ/2)

[
cos2(θ/2) cos(θ/2) cos(φ/2)

cos(θ/2) cos(φ/2) cos2(φ/2)

]
. (4)

If we set φ = θ , the final state is ρ(θ, θ ) = ρ0. This is known
as “measurement reversal” [3,31]: the second weak measure-
ment of the nuclear spin erases the effect of the first one.

The nuclear spin rotation by variable-strength measure-
ment is a probabilistic process, conditional on measuring the
electron in the |↓〉 state. The success probability for a single
weak measurement step starting from the state in Eq. (1)
is P1 = [1 + cos(θ/2)]/2. However, since this probability
depends on the nuclear spin population at the start of the
measurement, the success probability of two sequential weak
measurements is not simply this value squared. Rather, the
success probability for n sequential weak measurements in
our case is Pn = [1 + cos(θ/2)2n]/2 if all measurements are
performed with electron spin rotation θ on the same electron
spin resonance frequency.

For the measurement reversal (two weak nuclear measure-
ments, each using a different ESR frequency) the success
probability reads Prev = cos2(θ/2), which is notably zero for
θ = π , as should be expected (one cannot reverse a projective
measurement).

III. RESULTS

A. Rotating the nuclear spin state with
variable-strength measurements

Figure 2 shows experimental data obtained with full quan-
tum state tomography, i.e., measurement of all three nuclear

spin components σz = (ρ1,1 − ρ2,2), σx = (ρ1,2 + ρ2,1), and
σy = i(ρ1,2 − ρ2,1).

The left column of Fig. 2 is the result of a single nuclear
rotation step, consisting of an ESR pulse at νe2 rotating the
electron spin state around the x axis by angle θ , followed
by single-shot electron readout and postselection on the |↓〉
outcome. Then the nuclear spin is read out with the procedure
depicted in Fig. 1(d). The solid lines, in excellent agreement
with the data shown in circles, show the expected nuclear state
on the basis of the density matrix description presented above
without any free fitting parameters. The squares and dashed
line show the measured and expected success probability of
the protocol.

The middle column in Fig. 2 illustrates the application of
two sequential rotation steps, conducted for simplicity with
the same ESR rotation angle θ on νe2 at both steps. The
fact that the data (especially the σx component) follow the
theoretical predictions indicates that the nuclear state remains
coherent throughout the sequence, which contains two weak
nuclear measurements. In other words, the partial collapse
of the nuclear state after the first weak measurement is a
phase-coherent, predictable process, although the evolution is
nonunitary. A minimum requirement for observing this effect
is that the dephasing time of the nuclear spin qubit has to
be longer than the electron readout time. The 31P nuclear
spin qubit in 28Si already has an intrinsically long dephasing
time (T ∗

2n ≈ 0.5 ms [19] with the donor in the neutral charge
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FIG. 2. Quantum control of a nuclear spin with electron spin resonance pulses, observed through quantum state tomography of σz (first
row), σx (second row), and σy (third row) as a function of the electron spin rotation angle θ on the ESR frequency νe2. The columns show, from
left to right, one weak measurement, two weak measurements (each with rotation angle θ ), and measurement reversal (rotation by θ on νe2 and
then by φ on νe1, here φ = θ ). The circles and solid line show the experimental data and theory prediction, respectively, for the expectation
value (left axis). The squares and dashed line show the experimental data and theory prediction for the success probability of the protocol. All
lines are without any fitting parameters, except the solid lines for σx have been scaled by a constant to match the measured asymptotic values.
These are not exactly unity presumably due to dephasing-caused rotation errors in the tomography pulse. Each data point corresponds to 200
unconditional repetitions.

state), but here we further extend it by applying two NMR
refocusing pulses during the 3-ms electron readout step [see
Fig. 1(c)]. We also frequency modulate the NMR source to
track the resonance frequency of the nuclear spin qubit during
the electron readout phase since the change in the donor
electrostatic potential under readout conditions causes a Stark
shift of the resonance frequency [25].

A unique feature of our experiment is the high fidelity
with which the state prepared by weak measurement overlaps
with the target state [as expressed in Eqs. (2) and (3)]. With
both single- and double-rotation steps, we measured state
fidelities F ≈ 97%, averaged over all rotation angles. We did
not observe any significant dependence of the fidelity on the
rotation angle [a plot of F (θ ) is shown in Fig. 4]. These
observations suggest that the state fidelity is mainly limited
by rotation errors in the tomography pulse.

In the right column of Fig. 2 we present the so-called
measurement reversal [3,31], which requires a rotation by θ on
νe2 and a rotation by φ = θ on νe1. As predicted, we recover
the original state each time (again, conditional on obtaining
|↓〉 at each electron readout step). Note that when θ = π ,

the nuclear measurement becomes fully projective, and the
probability of a successful reversal becomes zero. The data
points around θ = π are thus only statistical fluctuations.

B. Using the nuclear spin rotation as a meter
for the measurement strength

We now explore the possibility of performing a weak elec-
tron spin measurement and the effects that such a measure-
ment has on the nuclear spin. The spin-dependent tunneling
mechanism that provides a discrimination between the |↑〉 and
|↓〉 states yields a fully projective measurement only in the
limit �↑,outtm → ∞, where tm is the measurement time and
�↑,out is the tunnel-out rate for a |↑〉 electron, defined such
that the probability for a |↑〉 electron to have tunneled out
of the donor after time tm is P↑,out (tm ) = 1 − exp(−�↑,outtm ).
For a finite value of �↑,outtm, the absence of a tunnel-out event
constitutes only a weak |↓〉 measurement.

The effect on the nuclear spin of a weak electron mea-
surement can be captured quantitatively in the density matrix
formalism by modifying Eq. (2) to include the probability
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FIG. 3. Extracting electron tunnel rates from a data set condi-
tioned on having no tunneling events. (a) Average nuclear polariza-
tion 〈σz〉 after a tm = 1.5 ms electron readout window as a function of
donor electrochemical potential, controlled by VDG. (b) Electron |↑〉
tunnel-out time 1/�↑,out extracted from the “tunnel-less” data in (a)
using Eq. (8) (circles) and measured directly from tunneling events
(crosses). Data are taken by stepping VDG from low to high values
and then doing the reverse.

1 − P↑,out (tm ) that a |↑〉 does not tunnel out within the mea-
surement time:

ρ(θ, tm )

= 1

1 + cos2(θ/2) + [1 − P↑,out (tm )] sin2(θ/2)

×
[
cos2(θ/2) + [1− P↑,out (tm )] sin2(θ/2) cos(θ/2)

cos(θ/2) 1

]
.

(5)

Hence, the expectation value of σz as a function of mea-
surement time, conditioned on measuring |↓〉 (no tunneling),
is

〈σz(tm )〉 = cos2(θ/2) + exp(−�↑,outtm ) sin2(θ/2) − 1

cos2(θ/2) + exp(−�↑,outtm ) sin2(θ/2) + 1
, (6)

which for θ = π reduces to a particularly simple form,

〈σz(tm )〉 = exp(−�↑,outtm ) − 1

exp(−�↑,outtm ) + 1
. (7)

Solving for �↑,out as a function of 〈σz(tm )〉, we find

1

�↑,out
= − tm

ln
(

1+〈σz (tm )〉
1−〈σz (tm )〉

) . (8)

Figure 3 shows an experiment where we prepare the
nucleus in |ψn0〉 = (|⇓〉 + |⇑〉)/

√
2 and the electron in |↓〉

and then apply an electron π pulse at νe1, thus leaving the
electron-nuclear system in the Bell state [23] |�+〉 = (|↓⇓〉 +
|↑⇑〉)/

√
2. We then bring the electron towards the readout

position for a time tm = 1.5 ms, and conditional on having
no tunneling events, we subsequently measure the nuclear
polarization 〈σz〉. The experiment is repeated at different
values of VDG, which controls the donor electrochemical po-
tential μD relative to the Fermi level of the electron reservoir
[28] and thereby tunes the donor-reservoir tunnel rate �↑,out.
For VDG � 0.2 V the |↑〉 state goes below the Fermi level,
causing �↑,out ≈ �↓,out ≈ 0; that is, the measurement strength
vanishes: the absence of a tunneling event does not imply a
|↓〉 state. Accordingly, we find 〈σz〉 ≈ 0 in that limit; that
is, the nuclear polarization has not been perturbed from the
initial value. For VDG < 0.2 V, 1/�↑,out becomes shorter, and
〈σz〉 veers towards negative values, which indicates that the
electron |↓〉 measurement is becoming stronger, thus turning
the initial |�+〉 Bell state towards |↓⇓〉. Using Eq. (8) we
can extract the numerical value of 1/�↑,out and compare it
[Fig. 3(b)] to the tunnel time extracted directly from tunnel-
ing probabilities. The two methods agree almost perfectly,
confirming the validity of our approach. The nonmonotonic
behavior of �↑,out (VDG) is related to modulations in the den-
sity of states of the electron reservoir [32]. We note that the
bandwidth (50 kHz) of the amplifier chain that measures the
instantaneous SET current, which depends on the charge state
of the donor, is much higher than any of the measured tunnel
rates. Therefore, tunnel events that are too fast to be detected
are very rare and do not constitute a significant source of
errors.

Unlike the weak nuclear measurement described earlier,
this process using weak electron measurement does not pre-
serve the purity of the nuclear spin state. Also, the use of a
maximally entangled |�+〉 Bell state as the starting point of
the sequence is inconsequential for this particular experiment;
the same result would be obtained starting from an incoherent
mixture of |↓⇓〉 and |↑⇑〉, although the perfect correlation
between the two spins is obviously required. Nonetheless,
the process provides a curious example of interaction-free
measurement [14] in the solid state.

IV. DISCUSSION

In conclusion, we have shown the application of several
concepts and tools of weak single-shot measurements to a
model solid-state spin system. We have demonstrated high-
fidelity, coherent control of the nuclear spin using only ESR
pulses and electron spin readout, and we have shown how
to measure tunnel rates from data sets without tunneling
events. In particular, the high fidelity of the measurement-
based control, even after multiple sequential steps, sets 31P
spins apart from other qubit systems where single-shot weak
measurements have been demonstrated. In the future, these
techniques can be applied to a variety of interesting problems,
such as the study of qubit dynamics under driving and weak
measurement [33], past quantum states of a monitored system
[34], and the interplay between measurement and chaotic
dynamics [35,36].
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APPENDIX A: DENSITY MATRIX CALCULATIONS

Below we refer to the Pauli operators as σ i , where i =
e, n refers to either electron or nuclear spin. We write down
the conditional nuclear spin states as they would be after
the weak measurement sequence [as presented in Fig. 1(d)]
without regard to how the nuclear spin readout is done in
practice. One could imagine that this approach might fail for
the measurements in Fig. 3, where we use only a short electron
readout time and hence the electron state is not initialized to a

known state before the strong nuclear spin readout sequence.
However, since the full strong nuclear spin readout sequence
consists of 25 [electron initialization, ESR pulse, electron
readout] cycles, the state of the electron spin at the end of
the weak measurement sequence will not significantly affect
the final nuclear spin assignment (only the first cycle of the 25
might give an incorrect result).

Given an arbitrary initial state of the nuclear spin described
by a density matrix ρ, the effect of the weak nuclear measure-
ment can be described by the conditional rotation matrix

U (θ ) = |⇓〉〈⇓| ⊗ I + |⇑〉〈⇑| ⊗ R(θ ), (A1)

R(θ ) =
[

cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

]
, (A2)

where θ is the rotation angle of the electron spin.
To give a concrete example, we start from the state � =

1/
√

2(|⇑〉 + |⇓〉) ⊗ |↓〉, i.e., in density matrix form (in the
basis |⇑↑〉|⇑↓〉|⇓↑〉|⇓↓〉)

ρ0 = 1

2

⎡
⎢⎣

0 0 0 0
0 1 0 1
0 0 0 0
0 1 0 1

⎤
⎥⎦. (A3)

After the initialization step and the conditional electron
spin rotation of angle θ , the state of the system is

ρθ = U (θ )ρ0U
†(θ ) = 1

2

⎡
⎢⎢⎢⎣

sin2(θ/2) − cos(θ/2) sin(θ/2) 0 − sin(θ/2)

− cos(θ/2) sin(θ/2) cos2(θ/2) 0 cos(θ/2)

0 0 0 0

− sin(θ/2) cos(θ/2) 0 1

⎤
⎥⎥⎥⎦, (A4)

which is an entangled electron-nuclear state for all θ �= 0, 2π

(according to the positive partial transpose (PPT) criterion).
If we then just simply trace out the electron (no condition-

ing), we obtain the nuclear spin state as

ρu
n = Tr2(ρθ )

= 1

2

[
sin2(θ/2) + cos2(θ/2) cos(θ/2)

cos(θ/2) 1

]

= 1

2

[
1 cos(θ/2)

cos(θ/2) 1

]
, (A5)

showing that the expectation value of σn
z remains constant

independent of θ but the off-diagonal elements decay as a
function of the measurement strength. In the limiting case of
θ = π , we are left with a classical mixture of up and down
nuclear spin states.

More interestingly, tracing out the electron conditionally
on measuring |↓〉, we obtain

ρc
n = Tr2[ρθ (I ⊗ |↓〉〈↓|)]

= 1

1 + cos2(θ/2)

[
cos2(θ/2) cos(θ/2)
cos(θ/2) 1

]
, (A6)

which is the state in Eq. (2). The second measurement is then
simply done by repeating the process starting from the state

ρ
(2)
θ = U (θ )

(
ρc

n ⊗ |↓〉〈↓|)U †(θ ) (A7)

and tracing out similarly. For the measurement reversal we
adopt the same procedure but use the rotation matrix for the
other electron spin resonance frequency, which reads U (θ ) =
|⇓〉〈⇓| ⊗ R(θ ) + |⇑〉〈⇑| ⊗ I . The expectation values for all
the nuclear spin components are shown with the data in Fig. 2.

Finally, if we also add a finite electron tunnel-out probabil-
ity to the process described above, we obtain

ρc
n = Tr2(ρθ {I ⊗ [|↓〉〈↓| + exp(−�t )|↑〉〈↑|]})

= 1

1 + cos2(θ/2) + exp(−�t ) sin2(θ/2)

×
[

cos2(θ/2) + exp(−�t ) sin2(θ/2) cos(θ/2)
cos(θ/2) 1

]
.

(A8)

Note that, unlike all the previous states, this one is not pure
unless exp(−�t ) sin2(θ/2) = 0.
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FIG. 4. Final-state fidelity compared to the ideal state as a func-
tion of the rotation angle for (a) one or (b) two conditional weak
measurements. The average of all points is 0.969(20) in (a) and
0.972(24) in (b). (The value in parentheses indicates the standard
deviation of the data points.) The crosses show points where we have
forced the state normalization

√〈σx〉2 + 〈σy〉2 + 〈σz〉2 = 1; see the
text.

APPENDIX B: FIDELITY OF NUCLEAR CONTROL
BY WEAK MEASUREMENT

Figure 4 shows the fidelity of the nuclear state ex-
perimentally prepared using variable-strength measurements
compared to the theoretical target state for both the one-
measurement and two-measurement cases. We define the state
fidelity as F = Tr(

√√
ρiρm

√
ρi ). The measured density ma-

trix is extracted from the measured expectation values of the
spin components 〈σx,y,z〉 as

ρm = 1

2

[
1 + 〈σz〉 〈σx〉 − i〈σy〉

〈σx〉 + i〈σy〉 1 − 〈σz〉

]
. (B1)

The ideal state ρi has been defined above and in Eqs. (2)
and (3).

Due to the high control and readout fidelity in our system,
the measured fidelities are very close to unity. At this level, the
finite number of repetitions per point creates statistical fluctu-
ations of a magnitude comparable to the true errors in the state
control. As a consequence, we find a few data points where
the measured value for

√〈σx〉2 + 〈σy〉2 + 〈σz〉2 is actually
above unity, meaning that the measured state appears to lie
outside the Bloch sphere. This, in turn, can artificially inflate
the extracted state fidelity, which relies upon the normaliza-

tion of the density matrices, to the extent that some points
produce a nonphysical fidelity above 1. Since this effect would
obviously skew the average value of the measurement fidelity
by introducing unphysical values, we have chosen to forcibly
normalize those states so that

√〈σx〉2 + 〈σy〉2 + 〈σz〉2 = 1.
The normalization factor is applied equally to all three spin
components. The points where this normalization was applied
are marked with crosses in Fig. 4.

APPENDIX C: NOTES ON EPR STEERING

The use of the word “steering” in the context of quantum
systems is somewhat ambiguous in the existing literature. The
experiments in this paper demonstrate coherent control of a
qubit state by measuring another, correlated qubit state. This
is in many contexts called steering, and this usage of the word
indeed makes intuitive sense; one is steering the nuclear spin
(qubit) by weakly measuring it via the electron (ancilla).

However, it is also common that the word steering, in the
quantum context, exclusively refers to what is more exactly
known as Einstein-Podolsky-Rosen (EPR) steering. In the
operational definition of Wiseman et al. [12], EPR steering
consists of a “game” where Alice must convince Bob that she
has shared with him an entangled state. To do so, she wants
to show Bob that she has the ability to control his quantum
state by choosing which measurement to perform on her end.
This, in turn, can be formalized in experimentally testable
EPR steering inequalities.

A demonstration of EPR steering could be conducted on
the 31P electron-nuclear system, where “Alice” is the electron
spin and “Bob” is the nuclear spin, by following three steps:

(i) Initialize the electron-nuclear system in a maximally en-
tangled Bell state, for example, |�+〉 = (|↓⇓〉 + |↑⇑〉)/

√
2,

as described in Sec. III B.
(ii) Define different measurement axes for the electron

spin. This requires an unconditional electron spin rotation,
which could be obtained by simultaneously applying ESR
pulses of rotation angle θ on both νe1 and νe2, before
a projective electron spin measurement. This is the key

σ i

FIG. 5. EPR steering. Theoretical expectation values for the
nuclear spin component obtained by starting from the Bell state
and performing an unconditional rotation of the electron spin with
angle θ and then a conditional measurement of the electron. As
the unconditional rotation changes the electron measurement basis,
one finds a perfect correlation between measuring electron |↓〉 and
nuclear spin Z components at θ = 0, π . At θ = π/2, there is perfect
correlation with the σn

x component.
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difference between EPR steering and the experiments shown
in Sec. III A, where all electron spin rotations were condi-
tional on the nuclear spin state (the simultaneous excitation
of νe1 and νe2 was not feasible in our experimental setup).

(iii) Conditioned on measuring electron spin |↓〉, perform
nuclear state tomography.

Figure 5 shows the expected nuclear spin components as
a function of θ . At θ = 0 the electron spin measurement is
along the z axis, and therefore, the subsequent measurement
of σn

z could be predicted with unity accuracy, whereas the
measurement of σn

x is completely undetermined. At θ = π/2
the electron spin measurement is along the x axis, and now the

reverse is true. This simple simulation captures the essence of
EPR steering. The state of Bob’s particle tracks exactly the
choice of measurement basis made by Alice.

We note that the violation of Bell’s inequality has al-
ready been demonstrated with the electron-nuclear system
studied here [23], and it is known that the requirements
for EPR steering are less strict than those for the violation
of Bell’s inequality. Therefore, using an experimental setup
capable of producing two simultaneous microwave pulses at
frequencies νe1 and νe2, it should be possible to demonstrate
EPR steering using the 31P system described in the present
work.
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