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Abstract. We have determined the localization length and the dielectric susceptibility
in uncompensated "°Ge:Ga near the critical point for the metal-insulator transition by in-
vestigating the electrical resistivity at low temperatures (e.g., between 0.02 K and 0.2 K)
and the magnetic-field dependence of the resistivity at B < 0.4 T in the context of the
variable-range-hopping conduction. The critical exponents for these quantities are discussed.
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1 Introduction

The critical exponents for the metal-insulator transition (MIT) in doped semiconduc-
tors provide important information about the roles of disorder and electron-electron
(e-e) interaction in disordered electronic systems [1]. Theoretically, the correlation
length in the metallic phase and the localization length in the insulating phase di-
verge at the critical point with the same exponent v. Instead of v, experimentalists
have determined the exponent u defined by ¢(0) o (N/N, — 1)#, where ¢(0) is the
zero-temperature conductivity, IV is the concentration, and N. is the critical concen-
tration. In many uncompensated semiconductors including our °Ge:Ga [2, 3], u ~ 0.5
has been found. This value violates Chayes et al.’s inequality [4] v > 2/3, which ap-
plies generally to disordered systems irrespective of the presence of e-e interaction, if
one assumes the Wegner relation [5] 4 = v derived for systems without e-e interaction.

In order to resolve this discrepancy, we determine v (not ) for uncompensated
Ge:Ga in the insulating side of the MIT.

2 Experiment

All of the "°Ge:Ga samples were prepared by neutron-transmutation doping (NTD) of
isotopically enriched "Ge single crystals. The NTD process assures a homogeneous
dopant distribution which is a crucial condition for experimental studies of the MIT (2,
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Fig. 1 (a) Resistivity p multiplied by TY3 vs T~Y2  From top to bottom in units of

10'7 cm~?, the concentrations are 1.848, 1.850, 1.853, 1.856, respectively. (b) Parameter To
evaluated by the fit of p(T) o« T71/3 exp[(T6/T)?] vs 1 — N/N..

3]. Details of the sample preparation and characterization including the resistivity
down to 0.02 K are described elsewhere [3].

In this study, we determined the electrical resistivity of nine samples in weak
magnetic fields (< 0.4 T) applied in the direction perpendicular to the current flow, and
at low temperatures between 0.05 K and 0.5 K using a 3He-4He dilution refrigerator.

3 Results and discussion

The electrical conduction of the insulating samples is described by the variable-range
hopping (VRH) at low temperatures. The resistivity p(T) is written as p(T) =
po exp[(To/T)?], where p = 1/2 for the excitation within the Coulomb pseudo gap,
and p = 1/4 for a constant density of sates around the Fermi level [6]. In our ear-
lier work [3], we reported that 1/p = 2 for N < 0.991V, (N, = 1.860 x 107 cm™?)
and that 1/p increases rapidly as IV approaches N, from 0.991N. and becomes much
larger than 4 if one neglects the temperature variation of po, which gives a significant
temperature dependence of p at T > Tp, i.e., near Ne. Theoretically, po < T77 is
believed, but the value of r has not been derived yet. In order to analyze the data
in 0,.991N, < N < N, in the context of the VRH conduction, we assume r = 1/3 for
70Ge:Ga based on an experimental result that the conductivity o(T") of "*Ge:Ga in the
vicinity of N (|N/N, — 1| < 0.003) is expressed as o(T) = a + bT? with ¢ = 1/3 [3].
Figure. 1(a) shows that p(T') is described well with p = 1/2 also in 0.991N. < N < NV..
Employing p = 1/2 and r = 1/3, we evaluate Ty, which is shown in Fig. 1{b). Accord-
ing to the theory [6], Tp is given by

kgTo = Be? /amey e(N) E(N) (1)

| =
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_ig. 2 (a) Slope d1n p/dB? vs T™%/? for the sample with N = 1.840 x 10'7 cm™>. Insets are
the plots of In p vs B? at T = 0.095 K (upper) and 0.215 K (lower). (b) Coefficient ~ defined
by Eq. (3) vs To.

in SI units, where 3 = 2.8 is a numerical factor, (V) is the dielectric constant, and
£(N) is the localization length.
Qur next step is to separate Ty into € and &. The theory predicts

In[p(B,T)/p(0,T)] = t (£/3)* (To/T )%/ (2)

for £/A <« 1. Here, A = \/h/eB is the magnetic length and ¢ = 0.0015 is a numerical
factor. The functional relationship of Eq. (2) is confirmed in the present system as
shown in Fig. 2(a). From Eq. (2},

v =d? lnp/dT~%2dB? = t (e/R)2 €4 TS/? (3)

50 that &€ = t=1/% (R/e)/241/4 T, 73/ We have determined ~ for nine samples. [See
Fig. 2(b).] We show £ and x = e¢—¢;, evaluated based on Egs. (1) and (2) in Fig. 3. Here,
¢ is the dielectric constant of the host Ge, and hence, x is the dielectric susceptibility
of the Ga acceptors. We should note that both £ and x are sufficiently larger than the
Bohr radius (8 nm for Ge) and ¢, ="16, respectively. According to the theory of the
| MIT, both ¢ and x diverge at N, as §(N) « (1= N/N.)™ and x(N) o< (N/N —=1)7¢,
respectively. We find, however, both £ and x do not show such simple dependence on
|' N in the range shown in Fig. 3, and there is apparently a kink at N ~ 0.99N.. In
both sides of the kink, the concentration dependence of £ and x are expressed well by
the scaling formula as shown in Fig. 3. Theoretically, the quantities should show the
critical behavior when N is very close to V.. Sov = 1.2+£0.3 and ¢ = 2.3+0.6 may be
concluded from the data in 0.99 < N/N.. However, the other region (0.9 < N/N, <
0.99), where v = 0.33 £0.03 and ¢ = 0.62 & 0.05 are obtained, is also very close to
N. in a conventional experimental sense. Concerning Chayes et al.’s inequality [4]
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Fig. 3 Concentration dependence of (a) the dielectric susceptibility and (b) the localization
length. The dotted lines represent the best fits.

v > 2/3, it holds only in the former region. It is interesting to point out that the
relation {/v = 2 holds in the both regions.

4 Conclusion

We have determined the behavior of both the localization length and the dielectric
susceptibility in "°Ge:Ga in the vicinity of V.. The simple critical behavior is observed
within only 1% of N.. In this concentration range, Chayes et al.’s inequality [4] v > 2/3
is satisfied.
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