Pressure-induced antiferromagnetic superconductivity in CeNiGe$_3$: A $^{73}$Ge-NQR study under pressure

A. Harada$^{a,*}$, S. Kawasaki$^a$, H. Mukuda$^a$, Y. Kitaoka$^a$, A. Thamizhavel$^b$, Y. Okuda$^b$, R. Settai$^b$, Y. Ōnuki$^b$, K.M. Itoh$^c$, E.E. Hailer$^d$, H. Harima$^e$

$^a$Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Osaka 560-8531, Japan
$^b$Department of Physics, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
$^c$Department of Applied Physics and Physico-Imformatics, Keio University, Yokohama 223-8522, Japan
$^d$Department of Material Science and Engineering, University of California at Berkeley and Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
$^e$Department of Physics, Faculty of Science, Kobe University, Kobe 657-8501, Japan

Available online 17 November 2006

Abstract

We report on antiferromagnetic (AF) properties of pressure-induced superconductivity in CeNiGe$_3$ via the $^{73}$Ge nuclear-quadrupole-resonance (NQR) measurements under pressure ($P$). The NQR-spectrum measurements have revealed that the incommensurate antiferromagnetic ordering is robust against increasing $P$ with the increase of ordered moment and ordering temperature. Nevertheless, the measurements of nuclear spin-lattice relaxation rate ($1/T_1$) have pointed to the onset of superconductivity as a consequence of Ce-4f electrons delocalized by applying $P$. The emergence of superconductivity under the development of AF order suggests that a novel type of superconducting mechanism works in this compound.

The pressure-induced superconductivity (SC) was recently discovered in an antiferromagnetic (AF) compound CeNiGe$_3$ with a Neel temperature $T_N = 5.5$ K under pressure ($P$) [1]. Two SC domes (SC1 and SC2) were found in the $P$ ranges of 1.9–3.5 GPa and 5.9–7.3 GPa, respectively [2]. $T_N$ increases as $P$ increases up to $P = 3$ GPa and disappears around $P = 7$ GPa. Interestingly, the SC1 phase coexisting with the AF phase exists far from a quantum critical point (QCP) at $P = 7$ GPa, while the SC2 phase emerges near the QCP as well as in Ce-based heavy-fermion superconductors such as CeCu$_2$Si$_2$ [3], CeCu$_2$Ge$_2$ [4], CePd$_2$Si$_2$ [5], CeRh$_2$Si$_2$ [6], CeIn$_3$ [7] and CeRhIn$_5$ [8]. Another remarkable point is that the superconducting transition temperature $T_{sc}$ in the SC1 dome exhibits a peak around $P = 3$ GPa where the Neel temperature does also with $T_N$~8.5 K. These results suggest a novel type of superconducting mechanism which differs from the previous examples. Here we report on the characteristics of the AF phase where the SC1 takes place via the $^{73}$Ge nuclear-quadrupole-resonance (NQR) studies above $T = 1.4$ K at $P = 0$, 2.0 and 2.8 GPa.

A $^{73}$Ge-enriched polycrystalline sample was prepared and crushed into powder to make oscillating magnetic field penetrate into the sample easily. $^{73}$Ge-NQR spectra shown in Fig. 1(a) are well separated with peaks arising from three inequivalent Ge sites in a unit cell. Each Ge site is assigned comparing with the values of quadrupole frequency on the basis of the band calculation performed by Harima et al. as shown in Table 1. We note that a small amount of other Ce–Ni–Ge compounds are actually contained in the sample, but each NQR spectral width for CeNiGe$_3$ is narrow enough with a full width at half maximum (FWHM) being ~40 kHz, assuring good quality of the
sample. As temperature \((T)\) decreases below \(T_N\), the spectra shown in Figs. 2(a) and 2(b) reveal a pattern ascribed to a distribution of internal field \(H_{\text{int}}\) in magnitude and/or direction, which are consistent with the occurrence of an incommensurate AF order (IAF) below \(T_N = 5.1\) and 7.4 K, respectively. Fig. 2(c) indicates the \(T\) dependence of \(H_{\text{int}}\) at the Ge(3) site which is scaled to that of an ordered moment \(M_{\text{IAF}}\). The increase of \(H_{\text{int}}\) is due to the development of \(M_{\text{IAF}}\) below \(T_N\) under \(P\) (see Fig. 2(c)). Here, \(H_{\text{int}}(T = 0) = 0.70, 0.86\) and 0.92 kG are estimated at \(P = 0, 2.0\) and 2.8 GPa, respectively. As \(T_N\) increases, \(M_{\text{IAF}} \propto H_{\text{int}}(T = 0)\) also increases. These results indicate that the IAF is robust against applying \(P\), exhibiting the increase of \(T_N\) and \(M_{\text{IAF}}\) in CeNiGe_3. Even in a situation such that \(T_N\) increases, it is remarkable that SC1 sets in, which has been never reported so far.

Fig. 3 shows the \(T\) dependence of \(1/T_1\) at \(P = 0, 2.0\) and 2.8 GPa at the Ge(1) site. \(1/T_1\) above \(T_N\) stays almost constant at \(P = 0\) GPa, suggesting that Ce-4f electrons-derived magnetic moments behave as almost localized at
ambient $P$. On the other hand, the respective $1/T_1$’s at $P=2.0$ and 2.8 GPa start to decrease below $T^*\sim14$ and 18 K that are significantly larger than $T_N=7.4$ and 8.0 K, probing an increase in the hybridization between 4f-electrons and conduction electrons which makes 4f electrons mobile via forming heavy electrons. As $T^*$, below which 4f electrons tend to be itinerant, increases with $P$, $T_N$ and $M_{AF} \propto H_{int}$ increase, stabilizing the AF order in CeNiGe$_3$. The presence of density of states at the Fermi level is confirmed by the observation of a $T_1 \propto T$ behavior in the AF state around $T=2.5$ K at $P=2.0$ and 2.8 GPa. The $T_1 \propto T$, that becomes valid in a narrow $T$ range, starts to decrease below $T\sim2$ K lower than $T_N$. At the same temperature $T\sim2$ K, the nuclear spin–spin relaxation rate ($1/T_2$) undergoes a peak, suggesting a development of longitudinal fluctuations of ordered moment in the IAF state. These results suggest that an unusual evolution towards a different kind of ordered phase may take place under $P$. Further experiments to address the novel nature in the IAF are required in the low $T$ region and under high $P$.

In summary, the $^{75}$Ge-NQR measurements in CeNiGe$_3$ above $T=1.4$ K at $P=0$, 2.0 and 2.8 GPa have revealed that the incommensurate antiferromagnetic order is robust against increasing $P$ with the increase of ordered moment and ordering temperature. Nevertheless the measurements of nuclear spin–lattice relaxation rate ($1/T_1$) have pointed to the onset of superconductivity as a consequence of Ce-4f electrons delocalized by applying $P$. The emergence of superconductivity under the development of AF ordered state suggests that a novel type of superconducting mechanism works in this compound.

This work was supported by Grant-in-Aid for Creative Scientific Research (15GS0213), MEXT and the 21st Century COE Program supported by Japan Society of the Promotion of Science.

References