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Theory of the anisotropy of the electron Hall mobility in n-type
4H– and 6H–SiC
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A theoretical model for the calculation of the anisotropy in the electron Hall mobility is reported for
n-type bulk single crystals of 4H– and 6H–SiC for the three distinct Hall measurement
configurations:~a! @Bic, j'c], ~b! @B'c, j'c], and ~c! @B'c, j ic], where B, j , and c are the
directions of the magnetic field, current flow, andc axis of the hexagonal unit cell, respectively.
Comparison with experimental results shows that the anisotropy of the electron transport in both
4H– and 6H–SiC can be explained solely by the anisotropy in the effective electron mass tensors.
© 2000 American Institute of Physics.@S0021-8979~00!01316-5#
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I. INTRODUCTION

The electron mobility of 4H– and 6H–SiC as dete
mined by the Hall effect, i.e., the electron Hall mobilit
depends strongly on the geometrical configurations of
Hall measurement due to the anisotropic structure of the c
duction bands.1,2 Quantitative understanding of the aniso
ropy of the electron transport in 4H– and 6H–SiC is imp
tant for designing SiC-based devices and reliable dev
simulators. Although several growth- and characterizati
related studies on 4H– and 6H–SiC have recently b
reported,3,4 the number of theoretical studies on electr
transport is rather limited.5–12 Moreover, most of the trans
port studies are based on Monte Carlo simulations in wh
the effect of the externally applied magnetic field cannot
included, i.e., the direct comparison of Monte Carlo resu
with the experimentally determined Hall mobility is no
possible.5–9 In order to improve this situation, we have r
cently reported analytical expressions for the electron mo
ity of 6H–SiC taking into account the magnetic field for th
three distinct Hall measurement configurations shown in F
1: ~a! @Bic, j'c], ~b! @B'c, j'c], and ~c! @B'c, j ic],
where B, j , and c are the directions of the magnetic fiel
current flow, and c axis of the hexagonal unit cell
respectively.11 This analytical calculation of the Hall mobil
ity provides the possibility to directly compare theoretic
results with the experimentally determined electron H
mobilities.11

In this article, we extend our previous work on 6H–S
to the 4H–SiC polytype, and compare the theoretically
tained electron Hall mobilities with the experimental valu
determined for the three distinct configurations shown
Figs. 1~a!–1~c!. The theory reported in Ref. 11 has furth
been refined, i.e., we shall repeat similar calculations
6H–SiC already reported in Ref. 11 using the improv
model described in the next section. It is the main purpos

a!Electronic mail: kitoh@appi.keio.ac.jp
1950021-8979/2000/88(4)/1956/6/$17.00
e
n-

-
e
-
n

h
e
s

l-

.

l
ll

-

n

r
d
of

this work to demonstrate that the anisotropy of the elect
Hall mobility for both the 4H– and 6H–SiC polytype i
solely dominated by the anisotropy of the effective electr
mass tensors.

II. METHOD AND MODEL

Our model is based on the conduction-band struct
determined recently by first-principle calculations a
experiments.13–18 We assume that there are six semiellips
dal and parabolic constant energy surfaces centered ex
at M points in the first Brillouin zone for both 4H– an
6H–SiC, as shown in Figs. 2~a! and 2~b!, respectively. This
assumption is reasonable since the Hall effect is a typ
low-field transport that takes place at the bottom of the c
duction band where parabolic approximation is valid. T
effective masses in theM -G, M-K, andM-L directions in the
reciprocal space of the hexagonal unit cell are listed in Ta
I. Our strategy for obtaining the Hall mobility consists of th
following steps. First, we derive an expression of the co
ductivity tensor including the magnetic field for one ellipso
from the semiclassical Boltzmann transport equation us
the relaxation time approximation and Maxwellian appro
mation. Then, we place three ellipsoids in proper positions
the reciprocal space by 120° rotation around thec axis. Fi-
nally, we obtain the total conductivity tensor by adding t

FIG. 1. Schematic diagram of the three distinct Hall measurement confi
rations:~a! @Bic, j'c#, ~b! @B'c, j'c#, and~c! @B'c, j ic#.
6 © 2000 American Institute of Physics
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contributions from each of the three ellipsoids. This pro
dure leads to analytical expressions for the drift and H
mobility as a function of the average electron moment
relaxation time and the effective masses.

For one ellipsoid shown in Fig. 3, the electric curre
density vectorJ8 in the presence of the magnetic field
derived from the Boltzmann transport equation using the
laxation time approximation and Maxwellian approximatio

J85s8E85S s118 2s128 B38 s318 B28

s218 B38 s228 2s238 B18

2s318 B28 s328 B18 s338
D E8, ~1!

where

s i i8 5qn8
q

mi*

*0
`dx*0

2pdw*0
ptkx

3/2exp~2x!hi sinudu

*0
`dx*0

2pdw*0
px3/2exp~2x!hi sinudu

5qn8
q

mi*
^tk& i , ~2a!

s i j8 5qn8
q2

mi* mj*

*0
`dx*0

2pdw*0
ptk

2x3/2exp~2x!hi sinudu

*0
`dx*0

2pdw*0
px3/2exp~2x!hi sinudu

5qn8
q2

mi* mj*
^tk

2& i , ~2b!

FIG. 2. Constant energy surfaces for~a! 4H–SiC and~b! 6H–SiC in the first
Brillouin zone.
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n852S md.s.* kBT

2p\2 D 3/2

exp$2~EC2EF!/kBT%, ~3!

x5
«

kBT
, ~4!

h15
m1* v1

2

2«
5cos2 w sin2 u, ~5a!

h25
m2* v2

2

2«
5sin2 w sin2 u, ~5b!

h35
m3* v3

2

2«
5cos2 u. ~5c!

E8 is the applied electric-field vector for one ellipsoid,q is
the electron charge,kB is the Boltzmann constant,T is the
temperature,tk is the electron momentum relaxation time f
an electron having wave vectork, « is the kinetic energy of
the electron,Bi 51,2,38 is the i th component of the applied
magnetic field for one ellipsoid,mi , j 51,2,3* is the i th compo-
nent of the effective mass, andv i 51,2,3 is the i th component
of the electron velocity. The subscriptsi , j 51,2,3 corre-
spond tox, y, andz directions for one ellipsoid shown in Fig
3 taken along theM -G, M-K, and M-L directions, respec-
tively. n8 is the electron concentration in each ellipso
wheremd.s.* is the density of states effective mass,EC is the
energy of the conduction-band minima, andEF is Fermi
level.

Three ellipsoids are placed in the proper positions a
combined into the total conductivity tensor by adding t
contributions from each ellipsoid. The total conductivity te
sor is given by

TABLE I. Effective masses of 4H– and 6H–SiC.

4H–SiC@m0# 6H–SiC@m0#

mM -G 0.57 0.75
mM -K 0.28 0.24
mM -L 0.31 1.83
J5sE5
3

2 F s118 1s228 2~s128 1s218 !B3 ~s138 1s238 !B2

~s128 1s218 !B3 s118 1s228 2~s138 1s238 !B1

2~s318 1s328 !B2 ~s318 1s328 !B1 2s338
GE. ~6!
E and B are the electric-field vector and the magnetic-fie
vector applied to a sample, respectively.

This expression allows us to calculate both the elect
drift and Hall mobility for arbitrary crystallographic direc
tions. For the three Hall measurement configurations~a!
@Bic, j'c], ~b! @B'c, j'c], and ~c! @B'c, j ic] shown in
Fig. 1, we obtain the following expressions for the electr
Hall mobility mH(a) , mH(b) , andmH(c) , respectively,1
n

mH~a!5
s128 1s218

s118 1s228
5q

^tk
2&11^tk

2&2

m1* ^tk&21m2* ^tk&1
, ~7a!

mH~b!5
s318 1s328

2s338
5

q

2 S ^tk
2&3

m1* ^tk&3
1

^tk
2&3

m2* ^tk&3
D , ~7b!

mH~c!5
s138 1s238

s118 1s228
5q

m1* ^tk
2&21m2* ^tk

2&1

m1* m3* ^tk&21m2* m3* ^tk&1
. ~7c!
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Equations 7~a!–7~c! are functions of the effective masse
and the average momentum relaxation time. Since the ef
tive mass tensors have already been obtained by the re
first-principle calculations and the experiments,13–18we need
to determine the values of^tk&1 – 3 and ^tk

2&1 – 3 in order to
calculate the electron Hall mobility.

The following four scattering mechanisms are cons
ered for the calculation of relaxation times: ionized impur
scattering, acoustic phonon deformation potential scatter
polar optical phonon scattering, and intervalley phonon
formation potential scattering. We consider the effect of
lipsoidal constant energy surfaces on the ionized impu
scattering because it is the most sensitive to the ba
structure anisotropy among the four scattering mechanis
The scattering rate for ionized impurity scatteringt ion

21 is
given by19–21

t ion
215

1

~2p!3

2p

\

A2m1* m2* m3*

\3 AxkBT

3E
0

2p

dw8E
0

p nionq
4

kS
2«0

2 S 1

uk2k8u21LD
22D 2

3S 12
v•v8

v2 D sinu8du8, ~8!

where v and v8 are the velocity of incident and scattere
electrons having wave vectorsk andk8, respectively,nion is
the concentration of ionized impurities,kS is the static rela-
tive dielectric constant,«0 is the dielectric constant in
vacuum, andLD is the screening length. The calculation
LD is performed using a model developed for compensa
semiconductors by Falicov and Cuevas,22,23 since the theory
is compared with the experimental data taken on relativ
compensated 4H– and 6H–SiC samples. In this case,
Falicov and Cuevas model is more appropriate than the s
dard Brooks and Herring model.24 The screening lengthLD

is given by23

LD5@8p~NMJ2NMN!#21/3, ~9!

FIG. 3. Coordinate system employed for one ellipsoidal constant en
surface in reciprocal space.
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whereNMJ andNMN are concentrations of the majority an
minority impurities, respectively.

The scattering rate for acoustic phonon deformation
tential scatteringtac

21 is given by20,21,25

tac
215

&~kBTmd.s.* !2/3Dac
2

p\4rvs
2 x1/2, ~10!

whereDac is the acoustic deformation potential,r is the den-
sity, andvs is the sound velocity in a particular semicondu
tor.

The scattering rate for polar optical phonon scatter
tpop

21 is given by20,21,26

tpop
215

q2vp~kS /k`21!

4pkS«0\A2xkBT/md.s.*
Fn~vp!~11\vp /xkBT!1/2

1$n~vp!11%Re~12\vp /xkBT!1/22
\vpn~vp!

xkBT

3sinh21~xkBT/\vp!1/21
\vp$n~vp!11%

xkBT

3sinh21
„Re~xkBT/\vp21!…1/2G , ~11!

wheren(v)51/$exp(\v/kBT)21% is the Bose–Einstein dis
tribution function,k` is the optical relative dielectric con
stant, and\vp is the polar optical phonon energy.

The scattering rate for intervalley phonon deformati
potential scatteringt int

21 is given by20,21,27

t int
215

ZDintmd.s.* 3/2

&p\3v intr
@n~v int!~xkBT1\v int!

1/2

1$n~v int!11%Re~xkBT2\v int!
1/2#, ~12!

where\v int is the energy of the intervalley phonon,D int is
the intervalley phonon deformation potential, andZ54 is the
number of final valleys available for intervalley scattering,
shown in Fig. 4.

Finally, we obtain the average momentum relaxati
time by

y

FIG. 4. Top view of the Brillouin zone showing electron transition b
intervalley scattering for 4H– and 6H–SiC.
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^tk& i5

E
0

`

dxE
0

2p

dwE
0

pS 1

t ion
211tac

211top
211t int

21D x3/2exp~2x!hi sinudu

*0
`dx*0

2pdw*0
px3/2exp~2x!hi sinudu

, ~13a!

^tk
2& i5

E
0

`

dxE
0

2p

dwE
0

pS 1

t ion
211tac

211top
211t int

21D 2

x3/2exp~2x!hi sinudu

*0
`dx*0

2pdw*0
px3/2exp~2x!hi sinudu

. ~13b!
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The values of the parameters,«0 , k` , r, vs , Dac, \vp ,
D int , and\v int are given in Table II, andDac andD int apply
only to the bulk 4H– and 6H–SiC employed in this stud
For example, we should note that the value ofDac'21 eV is
significantly different fromDac'11 eV obtained from much
higher crystalline quality, chemical-vapor-deposited~CVD!
4H– and 6H–SiC thin films.12,28,29In general, the crystalline
quality of bulk 4H– and 6H–SiC is much worse than that
CVD grown thin films. However, the electron Hall mobilit
measurement for the three distinct configurations shown
Figs. 1~a!–1~c! cannot be realized on one and the sa
sample using a thin film, i.e., we are forced for this work
employ the electron Hall mobility data taken on bu
samples. It has theoretically been shown that the correl
distribution of defects and impurities in semiconducto
leads to a lowering of the carrier mobility with little chang
in its temperature dependence.30 Scattering by point defects
dislocations, and micropipes leads to a further lowering
the mobility with the temperature dependence}T2p, where
p502 3

2.
31,32The simplest way to incorporate such an effe

for the mobility calculation of bulk 4H– and 6H–SiC, i
which inhomogeneous distribution of structural defects
likely to be present, is by adjusting the values ofDac andD int

for a particular sample, i.e., the values ofDac andD int listed
in Table II are obtained by a numerical fit of the experime
tal data for 4H– and 6H–SiC samples. The values of\vp

and\v int are taken from Ref. 8. The purpose of the pres
study is to demonstrate that the anisotropy of the elec
Hall mobility in 4H– and 6H–SiC is determined solely b
the corresponding anisotropic effective mass tensors. We
achieve this goal as long as we employ the same set of
parameters for the three Hall-effect configurations shown
Figs. 1~a!–1~c! and check whether the relative change in t
Hall mobility between the three configurations agrees w
the experimental results.

III. RESULTS AND DISCUSSION

Figures 5~a!–5~f! show the comparison of our Hall mo
bility calculations using Eqs.~7a!–~7c! ~solid curves! with
the experimental Hall-effect data~filled circles! in the three
distinct configurations for 4H– and 6H–SiC. The experime
tal data are the same as the ones shown in Ref. 10. The d
~nitrogen! and acceptor concentration for the 4H–SiC sam
are 6.431018 and 3.631018cm23, respectively, while those
for 6H–SiC are 3.531016 and 1.131016cm23, respectively.
The contribution of various scattering mechanisms to the
tal electron Hall mobility is also shown. Comparison b
.
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tween Figs. 5~a! and 5~c! for the 4H–SiC and between Figs
5~d! and 5~f! for the 6H–SiC shows that the relative chan
of the experimentally determined Hall mobility between t
three configurations is reproduced accurately by our the
Since the effect of anisotropy is described by the differen
betweenm1* , m2* , and m3* in Eqs. ~7a!–~7c! we conclude
that the anisotropy of the electron Hall mobility is describ
solely by the anisotropy of the effective mass tensors.

For 6H–SiC, the electron Hall mobility values in con
figuration~b! @B'c, j'c# are the largest throughout the tem
perature range shown, while the corresponding values
configuration~c! @B'c, j ic# are the smallest. The maximum
anisotropy factorm@B'c, j'c]/m@B'c, j ic# is about 5. For
4H–SiC, the electron Hall mobility values in configuratio
~c! @B'c, j ic# are the largest while the corresponding valu
in configuration~a! @Bic, j'c# are the smallest. The maxi
mum anisotropy factorm@Bic, j'c]/m@B'c, j ic# is about
0.7. The anisotropy of the Hall mobility for 4H–SiC is rela
tively small in comparison to that of 6H–SiC, caused by t
smaller anisotropy of the effective mass tensor for 4H–S
compared to 6H–SiC.

The contributions of the various scattering mechanis
shown in Figs. 5~a!–5~f! indicate that the dominant scatte
ing mechanisms in both 4H– and 6H–SiC are ionized im
rity scattering, acoustic phonon scattering, and interva
scattering, for low-, intermediate-, and high-temperature
gions, respectively. The deviation between our theory a
experiment at low temperatures for both 4H– and 6H–SiC
possibly due to the scattering by crystal defects such as p
defects, dislocations, and micropipes, while our calculatio
do not incorporate such effects accurately. It is also poss
that the experimentally measured mobility in the low
temperature region does not represent the mobility of f
carriers due to the occurrence of hopping conduction.33,34

The hopping conduction tends to lower the mobility wh
we ignore such an effect completely.

TABLE II. Parameters used for the calculation of relaxation time.

4H–SiC 6H–SiC

Static relative dielectric constant«0 9.7 9.7
Optical relative dielectric constantk` 6.5 6.5
Densityr ~g/cm3! 3.166 3.166
Sound velocityvs (104 m/s) 1.37 1.37
Acoustic deformation potentialDac (eV) 21.0 21.5
Polor optical phonon energy\vp (meV) 120 120
Intervalley deformation potentialD int (109 eV/cm) 3.7 2.7
Intervalley phonon energy\v int (meV) 85.4 85.4
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FIG. 5. Comparison of our Hall mo-
bility calculations ~solid curve! with
the experimental Hall-effect data
~filled circles! for; ~a! 4H–SiC in the
configuration given in Fig. 1~a!; ~b!
4H–SiC in the configuration given in
Fig. 1~b!; ~c! 4H–SiC in the configu-
ration given in Fig. 1~c!; ~d! 6H–SiC
in the configuration given in Fig. 1~a!;
~e! 6H–SiC in the configuration given
in Fig. 1~b!; and ~f! 6H–SiC in the
configuration given in Fig. 1~c!, re-
spectively. The contribution of various
scattering mechanisms to the tota
electron Hall mobility is shown by
broken curves. Experimental data a
taken from Ref. 10.
io
e
la
a

y
he
r

ilit
a
im
lle
ur

.
s.

D.
IV. CONCLUSION

We have developed a theoretical model for calculat
of the electron Hall mobility in 4H– and 6H–SiC for th
three distinct Hall measurement configurations. Our calcu
tion of the electron Hall mobility for 4H– and 6H–SiC as
function of temperature has revealed that the anisotrop
the electron Hall mobility can be determined solely by t
anisotropy in the effective masses. The contribution of va
ous scattering mechanisms to the total electron Hall mob
has been shown for both 4H– and 6H–SiC. The domin
scattering mechanisms in 4H– and 6H–SiC are ionized
purity scattering, acoustic phonon scattering, and interva
scattering, for the low-, intermediate-, and high-temperat
regions, respectively.
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