Introduction to NMR Quantum Information Processing Eisuke Abe (Keio University) December 18, 2002 "Towards scalable quantum computation" at RIEC, Tohoku University KEIO UNIVERSITY

■ 量子計算全般

 Quantum Computation and Quantum Information, M. A. Nielsen and I. L. Chuang, Cambridge University Press (2000)

NMR量子計算 (http://arxiv.org/)

- quant-ph/0205193, Lieven M. K. Vandersypen
 - Ph.D Thesis (224 pages), Stanford University
- quant-ph/0207172, R. Laflamme et. al.
 - 44 pages

■ 復習

- 量子計算のルール
- NMR量子計算の仕組み
 - 熱平衡状態の記述
 - 初期化の方法
 - 1-qubitの回転操作と制御NOTの実現

■ 実験例

- Deutsch-Jozsaのアルゴリズムの実験
- 論理ラベルの実験

1-qubitのとり得る状態 基底の2状態とその重ね合わせ状態

1-qubitの状態の標準基底 $|0\rangle = \begin{bmatrix} 1\\ 0 \end{bmatrix} \quad |1\rangle = \begin{bmatrix} 0\\ 1 \end{bmatrix} \qquad \qquad |\psi\rangle = \begin{bmatrix} \alpha\\ \beta \end{bmatrix} = \alpha |0\rangle + \beta |1\rangle \quad (\alpha, \beta \in \mathbf{C})$

2x2のユニタリ行列ならなんでもOK (古典回路ではNOTのみ)

$$|\psi\rangle \rightarrow \exp(-i \mathcal{H} t)|\psi\rangle = U|\psi\rangle$$

 $UU^{\$} = \mathbf{1}$ Sorry, not "dagger" but "dollar"!

n-qubitの状態 テンソル積による2ⁿ個の基底とその重ね合わせ

2-qubitの状態の標準基底

$$|00\rangle \equiv |0\rangle_A \otimes |0\rangle_B = \begin{bmatrix} 1 \times \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \times \begin{bmatrix} 1 \\ 0 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \quad |01\rangle = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \quad |10\rangle = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \quad |11\rangle = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

2ⁿx2ⁿのユニタリ行列ならなんでもOK (可逆回路)

Physical Realization

DiVincenzo's Criteria

- 1. Well defined extensible qubit array
- 2. Preparable in the "000..." state
- 3. Long decoherence time
- 4. Universal set of gate operations
- 5. Single quantum measurements

- 1. 分子内の核スピン1/2.qubitの数は分子の大きさで決まる
- 2. 室温下のため初期化は困難.実効的純粋状態をつくる
- 3. 長い.数秒程度
- 4. 交流磁場による1-qubitの回転とJ-結合による2-qubitのゲート
- 5. 多数の分子からの平均の信号

核磁気共鳴における qubit

"Bulk ensemble" 量子計算

1個の分子のハミルトニアン
$$\mathcal{H} = -\sum_{i} \omega_{i} \hat{I}_{z}^{i} + \sum_{i < j} 2\pi J_{ij} \hat{I}_{z}^{i} \hat{I}_{z}^{j}$$

$$\hat{I}_{z}^{i} = \mathbf{1} \otimes \cdots \otimes \frac{1}{2} \sigma_{z}^{i} \otimes \cdots \otimes \mathbf{1} \qquad \sigma_{z} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
$$\hat{I}_{z}^{i} \hat{I}_{z}^{j} = \mathbf{1} \otimes \cdots \otimes \frac{1}{2} \sigma_{z}^{i} \otimes \cdots \otimes \frac{1}{2} \sigma_{z}^{j} \otimes \cdots \otimes \mathbf{1}$$

実際には,一度に多数の分子の集団を扱う

密度行列による混合状態の記述が必要

溶液中では,溶媒分子は激し 〈動き回っているので分子間 の相互作用は打ち消される

2スピン系のHamiltonian

$$\mathcal{H} = -\omega_{A}\hat{I}_{z}^{A} - \omega_{B}\hat{I}_{z}^{B} + 2\pi J_{AB}\hat{I}_{z}^{A}\hat{I}_{z}^{B}$$

$$J - 結合無視$$

$$\mathcal{H} = -\omega_{A}\hat{I}_{z}^{A} - \omega_{B}\hat{I}_{z}^{B}$$
周波数の違い無視

$$\mathcal{H} = -\omega(\hat{I}_{z}^{A} + \hat{I}_{z}^{B})$$

???
$$\frac{3}{10}|\psi_1\rangle + \frac{7}{10}|\psi_2\rangle = \frac{3\alpha + 7\gamma}{10}|0\rangle + \frac{3\beta + 7\delta}{10}|1\rangle$$
 ???

これは,別の重ね合わせ状態を表すに過ぎない

$$\rho \equiv \sum_{i} w_{i} |\psi_{i}\rangle \langle\psi_{i}|$$

確率重み(非負実数) $\sum w_{n} = \operatorname{Tr}(\rho) = 1$

$$[F] = \sum_{i} w_{i} \langle\psi_{i}|F|\psi_{i}\rangle = \operatorname{Tr}(\rho F)$$

 $\rho \longrightarrow U\rho U^{\$}$

今の例では
$$ho = rac{3}{10} |\psi_1
angle \langle \psi_1 | + rac{7}{10} |\psi_2
angle \langle \psi_2 |$$
 とすればよい

密度行列の例

全体の w_0 が0の状態に, w_1 が1の状態にあるときの密度行列と角運動量のz成分

$$\rho = w_0 |0\rangle \langle 0| + w_1 |1\rangle \langle 1| = \begin{bmatrix} w_0 & 0\\ 0 & w_1 \end{bmatrix}$$

$$[I_z] = \operatorname{Tr}\left(\frac{1}{2}\rho\sigma_z\right) = \frac{w_0 - w_1}{2}$$

Case.1 $w_0 = w_1 = 0.5$ のとき

Case.2
$$w_0 = 1$$
, $w_1 = 0$ のとき

$$\rho = \frac{1}{2} \mathbf{1} \quad |1\rangle - \mathbf{1}$$
$$[I_z] = \mathbf{0} \quad |0\rangle - \mathbf{1}$$

$$\rho = |0\rangle\langle 0| |1\rangle$$

初期化された状態

Notice!! $\frac{1}{2}\mathbf{1} = \frac{1}{6}|0\rangle\langle 0| + \frac{1}{3}|1\rangle\langle 1| + \frac{1}{4}|\alpha\rangle\langle\alpha| + \frac{1}{4}|\beta\rangle\langle\beta|$ とも書ける ここで $|\alpha\rangle = \sqrt{\frac{2}{3}}|0\rangle + \sqrt{\frac{1}{3}}|1\rangle$ $|\beta\rangle = \sqrt{\frac{2}{3}}|0\rangle - \sqrt{\frac{1}{3}}|1\rangle$ 密度行列は一意に分解 (decompose) できない!!

熱平衡状態における密度行列

核磁気共鳴における測定

スペクトルの見方

スペクトルの例

 $|00\rangle$

 $|01\rangle$

 $|10\rangle$ $|11\rangle$

 $\begin{array}{c} \text{ABC} \\ |000\rangle |001\rangle |010\rangle |011\rangle |100\rangle |101\rangle |110\rangle |111\rangle \\ \rho_{\Lambda} = \begin{bmatrix} 3 & 1 & 1 & -1 & 1 & -1 & -3 \end{bmatrix} \end{bmatrix}$

 $U\rho_{\Delta}U^{\$} = [[1 \ 3 \ 1 \ 1 \ -1 \ -1 \ -1 \ -3 \]]$

左からスピンA,B,Cのスペクトル.自分以外のスピンの状態 によって4本に分裂(上:熱平衡,下:実行後)

2-qubitの純粋状態の密度行列

$$\rho_{pure} = |00\rangle\langle00| = \begin{bmatrix} 1\\0\\0\\0\end{bmatrix} \begin{bmatrix} 1&0&0&0 \end{bmatrix} = \begin{bmatrix} 1&0&0&0\\0&0&0&0\\0&0&0&0\\0&0&0&0 \end{bmatrix}$$

実効的に純粋とみなせる状態

$$\rho_{eff} = \frac{1 - \alpha}{2^n} \mathbf{1} + \alpha |00\rangle \langle 00| \qquad \because \quad \operatorname{Tr}(\rho_{eff} F) = \alpha \operatorname{Tr}(\rho_{pure} F)$$

$$\rho_{eq} \xrightarrow{U} \rho_{pure} \quad or \quad \rho_{eff}$$

非ユニタリな過程を導入することで、実効的に純粋な状態をつくれないか??

- 時間平均法 (Temporal averaging)
- 論理ラベル法 (Logical labeling)
- 空間平均法 (Spatial averaging)

時間平均法

複数回の実験結果を足し合わせて,実効的純粋状態をつくりだす

時間平均法の例

スピン1のスペクトル (左:熱平衡,右:初期化後)

5-qubitの量子計算に用いられた分子

補助ビットを用いて,残りのビットの実効的純粋状態をつくりだす

BCが10または01のときAをNOT

Bが1のときAをNOTし, Cが1のときAをNOT

$ABC 001\rangle$	$\stackrel{U}{\rightarrow}$	101>
$ 010\rangle$	\rightarrow	$ 110\rangle$
101>	\rightarrow	$ 001\rangle$
$ 110\rangle$	\rightarrow	$ 010\rangle$

(BCが11のときはAは2回NOTされて元に戻る)

 $\begin{array}{ccc} C_{BA} & C_{CA} \\ \left| 011 \right\rangle & \rightarrow & \left| 111 \right\rangle & \rightarrow & \left| 011 \right\rangle \\ \left| 111 \right\rangle & \rightarrow & \left| 011 \right\rangle & \rightarrow & \left| 111 \right\rangle \end{array}$

B or Cが制御ビット, Aが標的ビット の制御NOTゲート

Spin Hamiltonian

$$\mathcal{H} = -\sum_{i} \omega_{i} \hat{I}_{z}^{i} + \sum_{i < j} 2\pi J_{ij} \hat{I}_{z}^{i} \hat{I}_{z}^{j}$$

Zeeman分裂, Larmor歳差運動 J-結合, スピン間相互作用

$$\begin{pmatrix}
\hat{I}_{z}^{i} = \mathbf{1} \otimes \cdots \otimes \frac{1}{2} \sigma_{z}^{i} \otimes \cdots \otimes \mathbf{1} & \sigma_{z} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \\
\hat{I}_{z}^{i} \hat{I}_{z}^{j} = \mathbf{1} \otimes \cdots \otimes \frac{1}{2} \sigma_{z}^{i} \otimes \cdots \otimes \frac{1}{2} \sigma_{z}^{j} \otimes \cdots \otimes \mathbf{1}$$

2スピン系のハミルトニアン

(

$$\mathcal{H} = -\omega_A \hat{I}_z^A - \omega_B \hat{I}_z^B + 2\pi J_{AB} \hat{I}_z^A \hat{I}_z^B$$

$$= -\frac{1}{2} \begin{bmatrix} \omega_A + \omega_B & 0 & 0 & 0 \\ 0 & \omega_A - \omega_B & 0 & 0 \\ 0 & 0 & -\omega_A + \omega_B & 0 \\ 0 & 0 & 0 & -\omega_A - \omega_B \end{bmatrix} + \frac{\pi J_{AB}}{2} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Larmor歳差運動

磁気回転比の値

	磁気回転比	天然存在比
	(MHz/T)	(%)
¹ H	42.58	99.99
¹³ C	10.71	1.07
¹⁹ F	40.05	100.00

 \mathbf{B}_{0}

μ

磁気モーメントµと角運動量Jは平行

1-qubitの回転操作

= B_0 で回転する座標系 静止座標系 $\pi/2$ pulse B_{rf} 定

 π pulse

軸 (x,y,z)の周りの回転 (反時計回り!!) $R_{\alpha}(\theta) = \lim_{n \to \infty} \left(1 - \frac{i\theta \hat{I}_{\alpha}}{n}\right)^{n} = \exp(-\theta\sigma_{\alpha}/2)$ 微小回転の繰り返し $R_{x}(\theta) = \begin{bmatrix} \cos\frac{\theta}{2} & -i\sin\frac{\theta}{2} \\ -i\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{bmatrix} R_{y}(\theta) = \begin{bmatrix} \cos\frac{\theta}{2} & -\sin\frac{\theta}{2} \\ \sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{bmatrix} R_{z}(\theta) = \begin{bmatrix} \exp(-i\frac{\theta}{2}) & 0 \\ 0 & \exp(i\frac{\theta}{2}) \end{bmatrix}$ 特に $\theta = \pm \pi/2$ のとき

$$X = R_x(\pi/2) = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -i \\ -i & 1 \end{bmatrix} \quad Y = R_y(\pi/2) = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \quad Z = R_z(\pi/2) = XY\overline{X} = \sqrt{-i} \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$$

 $\overline{X} = R_x(-\pi/2)$ $\overline{Y} = R_y(-\pi/2)$ $\overline{Z} = R_z(-\pi/2) = X\overline{YX}$

スピンAについてのハミルトニアン $\mathcal{H}_{A} = -\omega_{A}\hat{I}_{z}^{A} + 2\pi J_{AB}\hat{I}_{z}^{A}\hat{I}_{z}^{B}$

 $\hat{I}_{z}^{B}|0\rangle_{B} = \frac{1}{2}|0\rangle_{B}$ なので,スピンBが上向きであるときのスピンAのハミルトニアンは, $\mathcal{H}_{A} = -(\omega_{A} - \pi J_{AB})\hat{I}_{z}^{A}$

すなわち,スピンBが**上向き**のときは,スピンAの歳差周波数は<mark>遅く</mark>なる. 反対に,スピンBが<mark>下向き</mark>のときは,スピンAは<mark>速く</mark>なる

J-結合の時間発展

Jの量子論理ゲートの等価回路

制御NOT ゲート Ζ \overline{Z} X $= Z_A \overline{Z}_B X_B J Y_B$ $= \sqrt{-i} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$ $= \sqrt{-i} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$ $= \sqrt{-i} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$ $= \sqrt{-i} \begin{bmatrix} 1 & -i & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$ $= \sqrt{-i} \begin{bmatrix} 1 & -i & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & -i \\ 0 & 0 & 1 & -i \\ 0 & 0 & 0 & -i \end{bmatrix}$ $= \sqrt{-i} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -i \\ 0 & 0 & 0 & -i \end{bmatrix}$ $= \sqrt{-i} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -i \\ 0 & 0 & 0 & -i \end{bmatrix}$ $C_{AB} = Z_A Z_B X_B J Y_B$

制御NOTもどき

$$\widetilde{C}_{AB} = X_B J Y_B = \sqrt{-i} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & i & 0 & 0 \\ 0 & 0 & 0 & -i \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Α

B

密度行列が対角的なときは制御NOTとして働く $\widetilde{C}_{AB}[[a \ b \ c \ d]]\widetilde{C}_{AB}^{\$} = [[a \ b \ d \ c]]$

Refocusing

系の時間発展を制御する $Y_A^2 U_J(\tau) Y_A^2 U_J(\tau) = Y_B^2 U_J(\tau) Y_B^2 U_J(\tau) = \mathbf{1}$ π pulse 任意の時間 の間のJ結合

周波数 Aで回転する座標系から見ると...

NMR量子計算の実験

chloroform

 $B_0 = 11.7 \text{T}$

bromotrifluoroethylene

Deutsch-Jozsaのアルゴリズム

2値関数f(x)が"constant"か"balanced"かを判定する

2 bit $\mathcal{O} f(x)$

	constant		balanced	
X	f_1	f_2	f_3	f_4
0	0	1	0	1
1	0	1	1	0

AB	С	В	
00	00	10	
01	01		
10	10	00	
11	11		

NMRにおいては00以外も入力してしまう

work bitが1のときはうまく 動作しないが,スペクトル から区別がつくので問題な し.初期化不要

fを実行する量子論理ゲートと パルス列は?

$$y \oplus f_1(x) = y \oplus 0 = y$$

$$f_1 = X_B^2 U_J (1/4J) X_B^2 U_J (1/4J)$$

$$y \oplus f_2(x) = y \oplus 1 = \overline{y}$$

$$f_2 = \overline{X}_B^2 f_1 = U_J (1/4J) X_B^2 U_J (1/4J)$$

$$f_3 = (Y_A \overline{X}_A \overline{Y}_A) (X_B \overline{Y}_B \overline{X}_B) X_B J Y_B$$

$$= Y_A \overline{X}_A \overline{Y}_A X_B \overline{Y}_B J Y_B$$

$$y \oplus f_4(x) = y \oplus \overline{x}$$

$$f_4 = \overline{X}_B^2 f_3 = Y_A \overline{X}_A \overline{Y}_A \overline{X}_B \overline{Y}_B J Y_B$$

横軸は49.9755160MHzからのずれ

論理ラベルの実験

密度行列の対角成分 (右:熱平衡,左:実行後)

スピンAについてのハミルトニアン $\mathcal{H}_{A} = -\omega_{A}\hat{I}_{z}^{A} - 2\pi J_{A}\hat{I}_{z}^{A}\hat{I}_{z}^{B} + 2\pi J_{A}\hat{I}_{z}^{A}\hat{I}_{z}^{C}$ Case.1: スピンBとCが同じ向きであるとき — → $\mathcal{H}_{A} = -\omega_{A}\hat{I}_{z}^{A}$ Case.2:スピンBとCが互いに逆向きであるとき → $\mathcal{H}_{A} = -(\omega_{A}\hat{I}_{z}^{A} \pm 2\pi J_{A})\hat{I}_{z}^{A}$ Uは,「BCが10または01のときAをNOT」という命令 Case.1 動かない X J^2 \overline{Y}_A Y_A Case.2 v 2倍動 X

Qubits	Algorithms	Group (First Author)	Journal	Year
2	Grover	IBM (Chuang)	Phys. Rev. Lett.	1998
	Deutsch-Jozsa	IBM (Chuang)	Nature	1998
	Grover	Oxford (Jones)	Nature	1998
	Deutsch-Jozsa	Oxford (Jones)	J. Chem. Phys.	1998
3	Error Correction	MIT (Cory)	Phys. Rev. Lett.	1998
	Teleportation	LANL (Neilsen)	Nature	1998
	Logical Labeling	IBM (Vandersypen)	Phys. Rev. Lett.	1999
5	Order Finding	IBM (Vandersypen)	Phys. Rev. Lett.	2000
7	Shor (Factoring 15)	IBM (Vandersypen)	Nature	2001

"Scalable" ??

大規模量子コンピュータの実現に向けて

Nuclear Spin

B. E. Kane, Nature (1998)

T. D. Ladd et. al., PRL (2002)

Linear Optics

E. Knill et. al. (KLM), Nature (2001)

Josephson junction J. Q. You *et. al.*, PRL (2002)

